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Agenda

• Brief History of Graph Neural Networks

• Advanced Topics in GNN:

• Expressivity of GNNs 

• Training Deep GNNs  

• Scalability of GNNs 

• Self/Un-Supervised Learning of GNNs 

• Applications:

• GNN in Social Networks 

• GNN in Medical Imaging 

• Future Directions



The Brief History of Graph Neural 

Networks



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Applications

What is the Graph Neural Network?

Graph Neural Network
Graph/Node 

Representation

Node 

Classification

Link Prediction

Graph 

Generation

Community 

Detection

………

Neural network model that can deal with graph data. 
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Graph Neural Network is not a New Thing 

Sperduti, Alessandro and Starita, Antonina. 1997

Sperduti, Alessandro, and Antonina Starita. "Supervised neural networks for the classification of structures."
5



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

A Rapidly Growing Area 

1 1 4 7

21

86

0

10

20

30

40

50

60

70

80

90

100

2014 2015 2016 2017 2018 2019 2020

Number of GNN Papers

ICLR ICML NeurIPS KDD All

https://github.com/shaohua0116/ICLR2020-OpenReviewData
6

https://github.com/shaohua0116/ICLR2020-OpenReviewData


Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

The Model of Graph Neural Networks

GNN 1.0

GNN 2.0

GNN 3.0

7
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The Model of Graph Neural Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0

GNN 3.0

8
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GNN 1.0: Understanding GNN as RNN 

• The RNN on sequences can be generalized to trees and DAGs.

Sperduti, Alessandro, and Antonina Starita. 1997
9
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GNN 1.0: Understanding GNN as RNN 

Before 2000
Sperduti, Alessandro, and Antonina 

Starita. (TNN 97) propose the 

generalized recursive neuron for 

the graph classification problem on 

Trees/DAGs. 

This generalized recursive neuron 

can only generate the graph 

representations. 

From 2000 to 2010
Gori et.al (IJCNN 05) and Scarselli

et.al (TNN 08) add the output gate 

for each node to generate the node 

representation in graphs. This model

is called GraphRNN.

After 2010
Li, Yujia, et al. (ICLR 16)  add gated 

recurrent units and modern 

optimization techniques to improve 

the performance of Scarselli et.al 

(TNN 09).

Tai, Kai Sheng et.al. (ACL 2015) 

extend LSTM to a tree-structured 

network topologies. 

The output gate

Only generate graph 

representation

Sperduti, Alessandro, and Antonina Starita. 1997

Gori, Marco, Gabriele Monfardini, and Franco Scarselli. 2005

Scarselli, Franco, et al. 2008

Li, Yujia, et.al. 2015， Tai, Kai Sheng et.al, ,2015

10
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The Brief History of Graph Neural Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0
• Understanding GNN as Convolution 

GNN 3.0

11
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GNN 2.0: Understanding GNN as Convolution 

Graph Signal Processing Convolutional Neural Networks

• How to perform the convolution on graphs?

• Irregular structures.

• Weighted edges.

• No orientation or ordering (in general).

12
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GNN 2.0: Understanding GNN as Convolution

Graph Convolutional Network (ICLR 2017)

𝑯(𝑙+1) = 𝜎(෩𝑫−
1
2෩𝑨෩𝑫−

1
2𝑯 𝑙 𝑾(𝑙))

• Approximate 1-order Chebyshev polynomial the in spatial domain. 

• Layer-wise convolution to extend receptive field.

• The practical convolutional model for graphs.  

PATCHY-SAN (ICML 2016)

• Neighborhood sampling to construct receptive 

field. 

Deep Locally Connected Networks(ICLR 2014) [1]

• Discuss two constructions on both spatial and spectral domain. 

• Analog the convolution operation based on the Laplacian spectrum.

• Additional eigen decomposition is needed. 

ChebyNet (NIPS 2016) [2]

• Build the connection between graph signal processing 

and graph convolution. 

• Use Chebyshev polynomial to fast approximate the graph 

filtering in the spectral domain.

[1] Bruna, Joan, et al. 2014

[2] Defferrard, Michaël, et.al. 2016 

[3] Niepert, Mathias, et.al. 2016

[4] Kipf, Thomas N., and Max 

Welling. 2017

13
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The Brief History of Graph Neural Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0
• Understanding GNN as Convolution 

GNN 3.0

• Variants of Convolutions

• GNN with Attention

• GNN with Graph Pooling

• High-order GNN

14
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GNN 3.0: Variants of Convolutions

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔𝜃 ∗ 𝑥 = 𝑈𝑔𝜃𝑈
Tx 𝑯(𝑙+1) = 𝜎(෩𝑫−

1
2෩𝑨෩𝑫−

1
2𝑯 𝑙 𝑾(𝑙))

15
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GNN 3.0: Variants of Convolutions

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the 

low-rank approximation of  the graph 

Laplacian I − ෩𝐷−
1

2 ሚ𝐴෩𝐷−
1

2.  

• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔𝜃 ∗ 𝑥 = 𝑈𝑔𝜃𝑈
Tx 𝑯(𝑙+1) = 𝜎(෩𝑫−

1
2෩𝑨෩𝑫−

1
2𝑯 𝑙 𝑾(𝑙))
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GNN 3.0: Variants of Convolutions

𝑯[:,𝑗]
𝑙+1

= 𝜎 𝜓𝑠

𝑖=1

𝑝

𝑭𝑖.𝑗
𝑙
𝜓𝑠
−1𝐻[:,𝑖]

(𝑙)
,

𝑗 = 1,… , 𝑞

• Use wavelet transform to replace 

Fourier transform in the original 

GCN. 

• More localized convolution and 

flexible neighborhood. 

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the 

low-rank approximation of  the graph 

Laplacian I − ෩𝐷−
1

2 ሚ𝐴෩𝐷−
1

2.  

• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔𝜃 ∗ 𝑥 = 𝑈𝑔𝜃𝑈
Tx 𝑯(𝑙+1) = 𝜎(෩𝑫−

1
2෩𝑨෩𝑫−

1
2𝑯 𝑙 𝑾(𝑙))
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GNN 3.0: Variants of Convolutions

𝑯[:,𝑗]
𝑙+1

= 𝜎 𝜓𝑠

𝑖=1

𝑝

𝑭𝑖.𝑗
𝑙
𝜓𝑠
−1𝐻[:,𝑖]

(𝑙)
,

𝑗 = 1,… , 𝑞

• Use wavelet transform to replace 

Fourier transform in the original 

GCN. 

• More localized convolution and 

flexible neighborhood. 

Graph Wavelet Neural Network [1]

Construct the GCN in hyperbolic space.
• Smaller distortion.

• Suitable for scale-free and hierarchical 

structure. 

• Hyperbolic feature transform.

𝒉𝑖
𝑙+1 ,𝐻

= (𝑾 𝑙+1 ⨂𝐾𝑙 𝒉𝒊
𝑙 ,𝐻

) ⨁𝐾𝑙𝒃(𝑙+1)

• Attention-based hyperbolic 

aggregation.

𝒚𝑖
𝑙+1 ,𝐻

= AGG𝐾𝑙 𝒉 𝑙 ,𝐻
𝑖

Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the 

low-rank approximation of  the graph 

Laplacian I − ෩𝐷−
1

2 ሚ𝐴෩𝐷−
1

2.  

• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔𝜃 ∗ 𝑥 = 𝑈𝑔𝜃𝑈
Tx 𝑯(𝑙+1) = 𝜎(෩𝑫−

1
2෩𝑨෩𝑫−

1
2𝑯 𝑙 𝑾(𝑙))
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 

𝑎𝑖𝑗 to the learnable self-attention.  

𝒉𝑖
(𝑙+1)

= 𝜎( 

𝑗∈𝑁 𝑣𝑖

𝑎𝑖𝑗𝑊
𝑙 𝒉𝑗

𝑙
)

𝑎𝑖𝑗 = exp(
𝜎 𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑗

σ𝑘∈𝑁(𝑣𝑖)
𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑘

Graph Attention Network [1] Gated Attention Networks [2] Spectral Graph Attention Network [3]

𝒉𝑖
(𝑙+1)

= 𝜎(σ𝑗∈𝑁 𝑣𝑖
𝑆𝑖,𝑗𝑾

𝑙 𝒉𝑗
𝑙
) 𝑺 = ෩𝑫−

1

2෩𝑨෩𝑫−
1

2

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
19
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 

𝑎𝑖𝑗 to the learnable self-attention.  

𝒉𝑖
(𝑙+1)

= 𝜎( 

𝑗∈𝑁 𝑣𝑖

𝑎𝑖𝑗𝑊
𝑙 𝒉𝑗

𝑙
)

𝑎𝑖𝑗 = exp(
𝜎 𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑗

σ𝑘∈𝑁(𝑣𝑖)
𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑘

Graph Attention Network [1]

Add a learnable gate 𝑔𝑖
𝑘 to model the 

importance for each head.  

𝒉𝑖
(𝑙+1)

= 𝜎(
𝑘=1

𝐾

𝑔𝑖
𝑘 

𝑗∈𝑁 𝑣𝑖

𝑎𝑖𝑗𝑊
𝑙 𝒉𝑗

𝑙
)

K is the number of heads. 

Gated Attention Networks [2] Spectral Graph Attention Network [3]

The original form: 

𝒉𝑖
(𝑙+1)

= 𝜎(σ𝑗∈𝑁 𝑣𝑖
𝑆𝑖,𝑗𝑾

𝑙 𝒉𝑗
𝑙
) 𝑺 = ෩𝑫−

1

2෩𝑨෩𝑫−
1

2

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
20
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 

𝑎𝑖𝑗 to the learnable self-attention.  

𝒉𝑖
(𝑙+1)

= 𝜎( 

𝑗∈𝑁 𝑣𝑖

𝑎𝑖𝑗𝑊
𝑙 𝒉𝑗

𝑙
)

𝑎𝑖𝑗 = exp(
𝜎 𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑗

σ𝑘∈𝑁(𝑣𝑖)
𝜶T 𝑾𝒉𝑖 𝑾𝒉𝑘

Graph Attention Network [1]

Add a learnable gate 𝑔𝑖
𝑘 to model the 

importance for each head.  

𝒉𝑖
(𝑙+1)

= 𝜎(
𝑘=1

𝐾

𝑔𝑖
𝑘 

𝑗∈𝑁 𝑣𝑖

𝑎𝑖𝑗𝑊
𝑙 𝒉𝑗

𝑙
)

K is the number of heads. 

Gated Attention Networks [2]

Apply the attention on the high / low-

frequency components in spectral domain. 

𝑯(𝑙+1) = 𝜎 AGG 𝑩𝑳𝑎𝐿𝑩𝑳𝑯
𝑙 , 𝑩𝑯𝑎𝐻𝑩𝑯𝑯

𝑙 𝑾 𝒍

𝑩 = [𝑩𝑳, 𝑩𝑯] is the spectral graph wavelet bases.

Spectral Graph Attention Network [3]

The original form: 

𝒉𝑖
(𝑙+1)

= 𝜎(σ𝑗∈𝑁 𝑣𝑖
𝑆𝑖,𝑗𝑾

𝑙 𝒉𝑗
𝑙
) 𝑺 = ෩𝑫−

1

2෩𝑨෩𝑫−
1

2

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
21
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GNN 3.0: GNN with Graph Pooling

Graph Pooling/Coarsening: Convert the node representation to graph representation.

• The most straightforward way: Max/Mean Pooling

• SAGE: Attentive Pooling

Graph  
Pooling

Introduce the self-attention to model the node 
importance during the pooling.  

Self-Attentive Graph Embedding（SAGE) 

Attn = softmax(𝑊𝑠2tanh(𝑊𝑠1𝐻
𝑇))

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
22
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GNN 3.0: GNN with Graph Pooling

Hierarchical Pooing

Learn the cluster assignment matrix to aggregate the 
node representations in a hierarchical way.  

Differentiable Graph Pooling (DIFFPOOL)[2]

Incorporate the node features and local structures to 
obtain a better assignment matrix.

EigenPooling [3]

The assignment matrix

𝑆 = softmax(GNN𝑙,pool(𝐴
𝑙 , 𝑋(𝑙)))

[1] Defferrard, Michaël, et.al. 2016 [2] Ying, Zhitao, et al. 2018 [3] Ma, Yao, et al. 2019

Graph  
Pooling

Graph Pooling with pre-defined subgraph by 
graph cut algorithm.

Graph Coarsening by Graph Cut [1]

Graclus with 

normalized cut

23
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GNN 3.0: High-order GNN

High-order GNN: extending the receptive field to encode high-order proximities in graphs.

DCNN

A 𝑛 × 𝐻 × 𝑛 tensor stacking the 

power series of the transition 

matrix 𝑃. 

MixHop

𝑯(𝑙+1) = ||𝑗∈𝑃𝜎(𝑨
𝑗𝑯 𝑙 𝑾𝑗

𝑙
)

The normalized 𝑗-order 

adjacency matrix 

APPNP

Incorporate the personalize page rank to capture the better 

locality of the target node.

[1] Atwood, James, and Don Towsley. 2016  [2] Abu-El-Haija, Sami, et al. 2019 [3] Klicpera, Johannes, et.al. 2018
24
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GNN Implementation: Message Passing Framework

• Message Passing Framework:

• Step 1: Gather and transform the messages from neighbors:

𝒎𝑖
(𝑙+1)

= AGG ( {𝑀 𝑙+1 (𝒉𝑖
𝑙
, 𝒉𝑗

𝑙
, 𝒆𝑖,𝑗)| 𝑗 ∈ 𝑁(𝑣𝑖)})

• Step 2: Update the state of the target node. 

𝒉𝑖
(𝑙+1)

= 𝑈(𝑙+1)(𝒉𝑖
𝑙
,𝒎𝑖

(𝑙+1)
)

• Most of current spatial GNNs can be formulated as a message passing process. 

The message generation function. 

Input: the state of current node, the state 

of the neighbor node and the edge features.

The neighborhood set of node. 

E.g. 1-hop neighbors.  

The aggregation function. 

E.g. SUM/MEAN/LSTM

The state update function. 

AGG 𝒎

𝒉(𝒍)

𝒉(𝒍)

𝒉(𝒍)

M

M

M

Step 1

𝑈 𝒉(𝒍+𝟏)

Step 2

Gilmer, Justin, et al. "Neural Message Passing for Quantum Chemistry." ICML. 2017.
25
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Summary

Advanced topics

Training Deep GNNs 

Scalability of GNNs

Self/Un-Supervised 

Learning of GNNs 

Expressivity of GNNs

….

26
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What can GNNs compute?

I. Graph Isomorphism 
2. Function 

Approximation

3. Graph Property 

Detection/Optimization/Estimation

Graph classification
Predicting the chemical 

property of molecule

Finding the shortest path between

two given nodes

HO-GNN [1]; GIN [2] IGNs [3,4,5]
GraphMoments [6]; CPNGNN [7]; 

[8,9]

[1] Morris et al. 2019; [2] Xu et al. 2019; [3] Maron et al. 2019a; [4] Maron et al. 2019b; [5] Maron et al. 2019c; 

[6] Dehmamy et al. 2019; [7] Sato et al. 2019; [8] Loukas 2020; [9] Garg et al. 2020; 

28
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1. The Graph Isomorphism (GI) view

GNN

(GCN, GraphSAGE, MPNN)

Given any two graphs, can GNN determine if they are isomorphic or not?

Isomorphic?

29
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1. The Graph Isomorphism (GI) view

GI is NP problem, mostly solved by Weisfeiler-Lehman (WL) test (1968)

Figures from Shervashidze et al. 2011

For each iteration:

Step-1: neighborhood aggregation

Step-2: label compression by hashing

Step-3: relabeling

30
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1. The Graph Isomorphism (GI) view

Xu et al. (2019) and Morris et al. (2019) proved that,

Xu et al. (2019) further proved, if the aggregation\readout functions are injective, 

31
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2. The Function Approximation (FA) view

𝑓(𝐴)

𝐴

For any function on graphs, if there is a GNN approximating it up to an arbitrary accuracy?

∃GNN, 𝑠. 𝑡. GNN − 𝑓 < 𝜖?

This kind of universality theorem has been proved for typical DNNs (Cybenko, 1989; Hornik, 1991)  

32
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2. The Function Approximation (FA) view

Function on graphs is symmetric w.r.t. node permutation

2
1

3

1
3

2

Permutation:

𝐴 𝑃𝐴𝑃T

33
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𝑓( )

2. The Function Approximation (FA) view

𝑓( )=

G-invariant function:

G-equivariant function:

𝑓( ) 𝑓=

𝑓 𝑃𝐴𝑃T = 𝑓(𝐴)

Permutation does not change the output, e.g. graph classification

Permutation is preserved in the output, e.g. node classification

𝑓 𝑃𝐴𝑃T = 𝑃𝑓(𝐴)𝑃T

34
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2. The Function Approximation (FA) view

Enforcing the invariance and equivariance, we have (Maron et al. 2019a):

𝐴𝑙+1 = 𝑓 𝐴𝑙 = 𝐿 ∗ 𝐴𝑙

𝑃⊗2𝑘vec 𝐿 = vec(𝐿)

G-Invariant Layer: G-Equivariant Layer:

𝑃⊗𝑘vec 𝐿 = vec(𝐿)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

𝐿1

𝐴𝑙
Linear function on graphs is defined as: 

𝐴𝑙+1

What does G-invariant/equivariant function look like? 

35
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2. The Function Approximation (FA) view

𝑋 ∈ 𝑅𝑛 GEL 𝜎 GEL … GIL 𝑦

G-Invariant Network (INN) 

G-Invariant 

Layer 

G-Equivariant 

Layer

(Maron et al. 2019b)

Non-linear 

(ReLu)
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2. The Function Approximation (FA) view

[Universality Theorem, Maron et al. 2019b] There exists a G-Invariant 

network (if high-order hidden tensors are allowed) that approximates any 

G-invariant function to an arbitrary precision.

∀𝒇, ∀𝜺 > 𝟎, ∃𝑾, 𝒔. 𝒕. 𝐈𝐍𝐍𝒘 − 𝒇 < 𝜺
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Graph Isomorphism or Function Approximation?

Isomorphic?

Graph Isomorphism Function Approximation

GEL 𝜎 GEL

…

GIL

𝑓(𝐴)

Equivalent

(Chen et al. 2019) 
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3. Not just graph identification

Are GNNs expressive enough to solve the following 

problems?

Finding the shortest path? If a graph contains a circle?

Yes, if the depth and width are beyond certain bounds, with sufficiently 

discriminative node attributes (Loukas 2020)

39
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

How to overcome training dynamics?

41
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The Power of Deeper DNNs

42

Unprecedented success of deep DNNs in computer vision

Deeper DNNs enable larger receptive fields

Layer 1

Layer 2

Layer 3
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The Power of Deeper GNNs

43

Do GNNs need deeper structures to enable larger receptive fields, too? 

What limits the expressive power of GNNs?

The depth 𝑑

The width 𝑤

GNNs significantly lose their power when capacity, 𝑑𝑤, is restricted
Shortest Path Cycle Detection Subgraph

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

The Power of Deeper GNNs

44

Do GNNs need deeper structures to enable larger receptive fields, too? 

What limits the expressive power of GNNs?

The depth 𝑑

The width 𝑤

GNNs significantly lose their power when capacity, 𝑑𝑤, is restricted
Shortest Path Cycle Detection Subgraph

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.
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The Power of Deeper GNNs

45

The boundary of capacity for different problems

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.
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Training Deeper GNNs

46

Why do we need deeper GNNs?

Can GNNs simply go deeper?

GCN: Basic GCN

GraphSAGE: GCN with improved aggregation

JKNet: leverage idea from DenseNet

ResGCN: leverage idea from ResNet

IncepGCN: leverage idea from Inception-v3

APPNP: leverage idea from PageRank

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

How to overcome training dynamics?
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GNNs are Shallow

47
Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

But can they really go deeper? Not all

What is the underlying reason of going deeper?

Citeseer 4 layers 16 layers 64 layers

GCN 76.7 65.2 44.6

GraphSAGE 77.3 72.9 16.9

ResGCN 78.9 78.2 21.2

JKNet 79.1 78.8 76.7

IncepGCN 79.5 78.5 79

APPNP 79.3 81.0 80.4

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64

Accuracy

GCN GraphSAGE ResGCN

JKNet IncepGCN APPNP
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?

48
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?

49
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Over-Smoothing

50

GNNs suffers from over-smoothing

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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Over-Smoothing

51

GNNs suffers from over-smoothing

As the layers go deeper, the hidden variables converge to a subspace

Initial 2 layers 99 layers
Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of Linear GCN

Why GCN works?

Laplacian smoothing →symmetric Laplacian smoothing

The weighted average of itself and its neighbors→ the new feature of 

a vertex

52

Laplacian Smoothing

𝑌 = 𝐼 − 𝛾෩𝐷−1 ෨𝐿 𝑋

GCNs

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝑋𝑊

෨𝐿 = ෩𝐷 − ሚ𝐴

෩𝐷−1 ෨𝐿 → ෩𝐷−
1
2 ෨𝐿෩𝐷−

1
2

𝛾 = 1

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI. 2018.
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Over-Smoothing

When GCNs fail?

𝐻𝐿 converges to a certain point with linear activation

𝐻𝐿 converges to a certain subspace ℳ with ReLU activation

𝐻𝐿 converges to a certain sub-cube 𝑂(ℳ, 𝑟) with ReLU and bias

53
Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of Linear GCN

When GCNs fail?

𝐻𝐿 converges to a certain point with linear activation

54
Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2

𝑙

𝑃0 where 𝑝𝑖𝑗 = Τ1 𝑑 𝑖 if 𝑖, 𝑗 ∈ ℰ

Tang, Jian, et al. "Line: Large-scale information network embedding." In WWW, 2015.

Probability of walking
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Over-Smoothing of Linear GCN

When GCNs fail?

𝐻𝐿 converges to a certain point with linear activation

55

𝑙-layer GCNs

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2

𝑙

𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2

𝑙

𝑃0 where 𝑝𝑖𝑗 = Τ1 𝑑 𝑖 if 𝑖, 𝑗 ∈ ℰ

Learnable Probability
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Over-Smoothing of Linear GCN

When GCNs fail?

𝐻𝐿 converges to a certain point with linear activation

56

𝑙-layer GCNs

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2

𝑙

𝑋𝑊

Eigen decomposition

𝑌 =
𝑖=1

𝑛
෩𝐷−

1
2 𝜆𝑖𝑢𝑖𝑢𝑖

⊤ 𝑙
𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk

𝑌 = ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2

𝑙

𝑃0 where 𝑝𝑖𝑗 = Τ1 𝑑 𝑖 if 𝑖, 𝑗 ∈ ℰ
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Over-Smoothing of Linear GCN

57

Rewrite eigen decomposition
Eigen decomposition

෩𝐷−
1
2 𝜆1𝑢1𝑢1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑚𝑢𝑚𝑢𝑚

⊤ 𝑙𝑋𝑊 + ෩𝐷−
1
2 𝜆𝑚+1𝑢𝑚+1𝑢𝑚+1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑛𝑢𝑛𝑢𝑛

⊤ 𝑙𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.
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Over-Smoothing of Linear GCN

58

Rewrite eigen decomposition

Suppose graph ℊ has 𝑚 connected components. It indicates

Eigen decomposition

෩𝐷−
1
2 𝜆1𝑢1𝑢1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑚𝑢𝑚𝑢𝑚

⊤ 𝑙𝑋𝑊 + ෩𝐷−
1
2 𝜆𝑚+1𝑢𝑚+1𝑢𝑚+1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑛𝑢𝑛𝑢𝑛

⊤ 𝑙𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

Eigenvalues

1 = 𝜆1 = ⋯ = 𝜆𝑚 > 𝜆𝑚+1 > ⋯ > 𝜆𝑛 > −1
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Over-Smoothing of Linear GCN

59

Rewrite eigen decomposition

Suppose graph ℊ has 𝑚 connected components. It indicates

When 𝑙 → +∞, 𝜆𝑚+1, … , 𝜆𝑛 → 0

Eigen decomposition

Eigenvalues

1 = 𝜆1 = ⋯ = 𝜆𝑚 > 𝜆𝑚+1 > ⋯ > 𝜆𝑛 > −1

෩𝐷−
1
2 𝜆1𝑢1𝑢1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑚𝑢𝑚𝑢𝑚

⊤ 𝑙𝑋𝑊 + ෩𝐷−
1
2 𝜆𝑚+1𝑢𝑚+1𝑢𝑚+1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑛𝑢𝑛𝑢𝑛

⊤ 𝑙𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

Eigen decomposition

lim
𝑙→∞

෩𝐷−
1
2 𝜆1𝑢1𝑢1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑚𝑢𝑚𝑢𝑚

⊤ 𝑙𝑋𝑊 + ෩𝐷−
1
2 𝜆𝑚+1𝑢𝑚+1𝑢𝑚+1

⊤ 𝑙𝑋𝑊 +⋯ ෩𝐷−
1
2 𝜆𝑛𝑢𝑛𝑢𝑛

⊤ 𝑙𝑋𝑊

𝟏 𝟏 𝟎 𝟎
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Over-Smoothing of Non-Linear GCN

𝐻𝐿 converges to a certain subspace ℳ with ReLU activation

We define a subspace ℳ first

𝑑ℳ(∙) refers to the distance to the subspace ℳ

60

ℳ subspcae

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

𝑑ℳ(∙)
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Over-Smoothing of Non-Linear GCN

𝐻𝐿 converges to a certain subspace ℳ with ReLU activation

We define a subspace ℳ first

𝑑ℳ(∙) refers to the distance to the subspace ℳ

𝑑ℳ(∙) converges as the layers go deeper

61

ℳ subspcae

Convergence

𝑑ℳ 𝐻𝑙+1 = 𝑑ℳ 𝜎(෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙) ≤ 𝑠𝑙𝜆𝑚+1𝑑ℳ 𝐻𝑙

𝜆𝑚+1 < 1 is the largest non-one eigenvalue
𝑠𝑙 ≤ 1 is the maximum singular value of 𝑊𝑙

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

𝑑ℳ(𝐻0)

𝑑ℳ(𝐻1)
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Over-Smoothing of Non-Linear GCN

62

Convergence of ሚ𝐴

𝑑ℳ ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝑋 ≤ 𝜆𝑚+1𝑑ℳ 𝑋 , 𝜆𝑚+1 < 1

Convergence

𝑑ℳ 𝐻𝑙+1 = 𝑑ℳ 𝜎(෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙) ≤ 𝜆𝑚+1𝑠𝑙𝑑ℳ 𝐻𝑙

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Over-Smoothing of Non-Linear GCN

63

Convergence of ሚ𝐴

𝑑ℳ ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝑋 ≤ 𝜆𝑚+1𝑑ℳ 𝑋 , 𝜆𝑚+1 < 1

Convergence of 𝑊

𝑑ℳ 𝑋𝑊𝑙 ≤ 𝑠𝑙𝑑ℳ 𝑋 , 𝑠𝑙 ≤ 1

Convergence

𝑑ℳ 𝐻𝑙+1 = 𝑑ℳ 𝜎(෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙) ≤ 𝜆𝑚+1𝑠𝑙𝑑ℳ 𝐻𝑙

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Over-Smoothing of Non-Linear GCN

64

Convergence of ሚ𝐴

𝑑ℳ ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝑋 ≤ 𝜆𝑚+1𝑑ℳ 𝑋 , 𝜆𝑚+1 < 1

Convergence of 𝑊

𝑑ℳ 𝑋𝑊𝑙 ≤ 𝑠𝑙𝑑ℳ 𝑋 , 𝑠𝑙 ≤ 1

Convergence of ReLU

𝑑ℳ 𝜎(𝑋) ≤ 𝑑ℳ 𝑋

Convergence

𝑑ℳ 𝐻𝑙+1 = 𝑑ℳ 𝜎(෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙) ≤ 𝜆𝑚+1𝑠𝑙𝑑ℳ 𝐻𝑙

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Over-Smoothing of GCNs with bias

• 𝐻𝐿 converges to a certain sub-cube 𝑂(ℳ, 𝑟) with ReLU and bias

65

GCNs with bias

𝐻𝑙+1 = 𝜎 ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙 + 𝑏𝑙

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of GCNs with bias

• 𝐻𝐿 converges to a certain sub-cube 𝑂(ℳ, 𝑟) with ReLU and bias

66

GCNs with bias

𝐻𝑙+1 = 𝜎 ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙 + 𝑏𝑙

Convergence of bias

𝑑ℳ 𝐻𝑙+1 ≤ 𝜆𝑚+1𝑠𝑙𝑑ℳ 𝐻𝑙 + 𝑑ℳ 𝑏𝑙

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of GCNs with bias

• 𝐻𝐿 converges to a certain sub-cube 𝑂(ℳ, 𝑟) with ReLU and bias

67

GCNs with bias

𝐻𝑙+1 = 𝜎 ෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2𝐻𝑙𝑊𝑙 + 𝑏𝑙

Convergence of bias

𝑑ℳ 𝐻𝑙+1 ≤ 𝜆𝑚+1𝑠𝑙𝑑ℳ 𝐻𝑙 + 𝑑ℳ 𝑏𝑙

GCN with bias

lim
𝑙→+∞

𝑑ℳ 𝐻𝑙 ≤ ൞

𝑑ℳ 𝑏𝑚𝑎𝑥

1 − 𝜆𝑚+1𝑠𝑚𝑎𝑥
, with 𝜆𝑚+1𝑠𝑙 < 1

∞,with 𝜆𝑚+1𝑠𝑙 > 1

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Overall Over-Smoothing?

68

Non-linear GCN

lim
𝑙→+∞

𝑑ℳ 𝐻𝑙 ≤ 𝜆𝑚+1𝑠𝑚𝑎𝑥
𝑙𝑑ℳ 𝑋 = ቊ

0,with 𝜆𝑚+1𝑠𝑙 < 1
∞,with 𝜆𝑚+1𝑠𝑙 > 1

Linear GCN

lim
𝑙→+∞

𝐼 − 𝛾𝐿𝑠𝑦𝑚
𝑙
𝑋𝑊 = ෩𝐷−

1
2 𝟏𝑖 𝑋𝑊 𝑖

𝑖=1

𝑚

GCN with bias

lim
𝑙→+∞

𝑑ℳ 𝐻𝑙 ≤ ൞

𝑑ℳ 𝑏𝑚𝑎𝑥

1 − 𝜆𝑚+1𝑠𝑚𝑎𝑥
, with 𝜆𝑚+1𝑠𝑙 < 1

∞,with 𝜆𝑚+1𝑠𝑙 > 1

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Universal Over-Smoothing
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General Case

𝑑ℳ 𝐻𝑙+1 − 𝑟 ≤ 𝑣 𝑑ℳ 𝐻𝑙 − 𝑟

Non-linear GCN

𝑣 = 𝑠𝑚𝑎𝑥𝜆𝑚+1

𝑟 = 0

GCN with bias

𝑣 = 𝑠𝑚𝑎𝑥𝜆𝑚+1

𝑟 =
𝑑ℳ 𝑏𝑚𝑎𝑥

1 − 𝑣

Basic GCN

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?
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GNNs suffer from Overfitting

Too many parameters are established but only few of data points are 

provided

Overfitting

71
Rong, Yu, et al. "Dropedge: Towards deep graph convolutional networks on node classification." ICLR 2020.
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?
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Training dynamics

73

𝑙-layers gradient

𝑑𝐻𝑙+1
𝑑𝐻𝑙

∙
𝑑𝐻𝑙
𝑑𝐻𝑙−1

∙ ⋯ ∙
𝑑𝐻0
𝑑𝑊0

≤ (𝑠𝑙𝜆𝑚+1) ∙ (𝑠𝑙−1𝜆𝑚+1) ∙ ⋯ ∙
𝑑𝐻0
𝑑𝑊0

The gradients vanish as the model go deeper because 𝑠1…𝑙𝜆𝑚+1 < 1

RGB as Features Layer 1 Layer 100 Layer 200 Layer 500

RGB=[0,0,0]
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

Deal with adjacency matrix

Deal with weights

How to overcome training dynamics?
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Over-smoothing Layer

When does over-smoothing happen? 

Let’s take basic GCN as example: 𝑣 = 𝜆𝑚+1𝑠𝑚𝑎𝑥 , 𝑟 = 0

75
Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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Over-smoothing Layer

When does over-smoothing happen? 

Let’s take basic GCN as example: 𝑣 = 𝜆𝑚+1𝑠𝑚𝑎𝑥 , 𝑟 = 0

76

𝜖-smoothing

𝑑ℳ 𝐻𝑙 ≤ 𝜆𝑚+1𝑠𝑚𝑎𝑥
𝑙𝑑ℳ 𝑋 < 𝜖, ∀𝑙 ≥ 𝐿

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

𝜖



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Over-smoothing Layer

When does over-smoothing happen? 

Let’s take basic GCN as example: 𝑣 = 𝜆𝑚+1𝑠𝑚𝑎𝑥 , 𝑟 = 0

77

𝜖-smoothing

𝑑ℳ 𝐻𝑙 ≤ 𝜆𝑚+1𝑠𝑚𝑎𝑥
𝑙𝑑ℳ 𝑋 < 𝜖, ∀𝑙 ≥ 𝐿

𝜖-smoothing layer

𝑙∗ ℳ, 𝜖 ≔ min
𝑙
𝑑ℳ 𝐻𝑙 < 𝜖

Relaxed 𝜖-smoothing layer

መ𝑙 ℳ, 𝜖 =
log

𝜖
𝑑ℳ 𝑋

log 𝜆𝑚+1𝑠𝑚𝑎𝑥

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

𝜖
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Over-smoothing Layer

• How to alleviate over-smoothing?

78

Relaxed 𝜖-smoothing layer

መ𝑙 ℳ, 𝜖 =
log

𝜖
𝑑ℳ 𝑋

log 𝜆𝑚+1𝑠𝑚𝑎𝑥

Adjacency Matrix Weights

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

Deal with adjacency matrix

Deal with weights

How to overcome training dynamics?
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Alleviate Over-Smoothing by Adjacency Matrix

80

Relaxed 𝜖-smoothing layer

መ𝑙 ℳ, 𝜖 =
log

𝜖
𝑑ℳ 𝑋

log 𝜆𝑚+1𝑠𝑚𝑎𝑥

Adjacency Matrix

How adjacency matrix affects on over-smoothing?

ቋ
𝜆𝑚+1 ↑⇒ log 𝜆𝑚+1𝑠𝑚𝑎𝑥 ↑

𝜆𝑚+1𝑠𝑚𝑎𝑥 < 1
⇒ መ𝑙 ℳ, 𝜖 ↑

So how to increase 𝜆𝑚+1?

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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So how to increase 𝜆𝑚+1? Drop Edges!

When drop edges:

The spread speed of the information is 

decreased  

The dimension of subspace increases 

as the number of connected 

components increases

Alleviate Over-Smoothing by Adjacency Matrix

81
Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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DropEdge results

Alleviate Over-Smoothing by Adjacency Matrix

82

Citeseer 4 layers DropEdges 16 layers DropEdges 64 layers DropEdges

GCN 76.7 79.2(+2.5) 65.2 76.8(+11.6) 44.6 45.6(+1.0)

ResGCN 78.9 78.8(-0.1) 78.2 79.4(+1.2) 21.2 75.3(+54.1)

JKNet 79.1 80.2(+1.1) 78.8 80.1(+1.3) 76.7 80.0(+3.3)

IncepGCN 79.5 79.9(+0.4) 78.5 80.2(+1.7) 79.0 79.9(+0.9)

GraphSAGE 77.3 79.2(+1.9) 72.9 74.5(+1.6) 16.9 25.1(+8.2)

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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Training Deeper GNNs

83

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

Deal with adjacency matrix

Deal with weights

How to overcome training dynamics?
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Alleviate Over-Smoothing by Weights

84

Relaxed 𝜖-smoothing layer

መ𝑙 ℳ, 𝜖 =
log

𝜖
𝑑ℳ 𝑋

log 𝜆𝑚+1𝑠𝑚𝑎𝑥

Similarly, increasing 𝑠𝑚𝑎𝑥 will increase the 𝜖-smoothing layer. So 

how to increase 𝑠𝑚𝑎𝑥? Increase the initial 𝑊𝑙s.

Weights

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Alleviate Over-Smoothing by Weights

85

Try different 𝑠𝑚𝑎𝑥 as initial

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?

PairNorm

Shortcuts in Structures

86
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Pair Norm: Center and Rescale

87

PairNorm: Center and rescale (normalize) GCN outputs ෨𝑋 ≔

GCN(𝐴, 𝑋) to keep the total pairwise squared distance

unchanged
Center

𝑥𝑖
𝑐 = 𝑥𝑖 −

1

𝑛


𝑖=1

𝑛

𝑥𝑖

Rescale

ሶ𝑥𝑖 = 𝑠 𝑛
𝑥𝑖
𝑐

෨𝑋𝑐
𝐹

2

Zhao, Lingxiao, and Leman Akoglu. "PairNorm: Tackling Oversmoothing in GNNs." ICLR. 2020.
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Training Deeper GNNs

Why do we need deeper GNNs?

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

How to overcome training dynamics?

Pair norm

Shortcuts in Structures

88
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Structures with Shortcuts： Results

Citeseer 4 layers 16 layers 64 layers

GCN 76.7 65.2 44.6

GraphSAGE 77.3 72.9 16.9

ResGCN 78.9 78.2 21.2

JKNet 79.1 78.8 76.7

IncepGCN 79.5 78.5 79

APPNP 79.3 81.0 80.4

89
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GCN GraphSAGE ResGCN

JKNet IncepGCN APPNP

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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Shortcuts in Structures

90

ResGCN

Input

GCL

GCL

GCL

Output

JKNet

Aggregation

Input

GCL

GCL

GCL

Output

IncepGCN

Aggregation

Input

GCL

GCL

GCL

GCL

GCL

GCL

Output

APPNP

Input

APPNP

GCL

Output

KK+1

Aggregation

𝐻𝑙+1 = 𝑓 𝐴,𝐻𝑙 + 𝐻𝑙
𝐻𝑙+1 = 𝑓 𝐴, 𝐻𝑙
𝐻𝐿+1 = 𝑎𝑔𝑔(𝐻1, … , 𝐻𝐿)

𝐻𝑝,𝑙+1 = 𝑓 𝐴,𝐻𝑝,𝑙 𝑝 > 𝑙 + 1

𝐻𝑃+1 = 𝑎𝑔𝑔(𝐻1,1, … , 𝐻𝑃,𝑃)
𝑍𝑙+1 = 1 − 𝛽 𝐴𝑍𝑙

+𝛽𝐻0

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
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GCN with Structures

91

General Case

𝑑ℳ 𝐻𝑙+1 − 𝑟 ≤ 𝑣 𝑑ℳ 𝐻𝑙 − 𝑟

Non-linear GCN

𝑣 = 𝑠𝑙𝜆𝑚+1

𝑟 = 0

GCN with bias

𝑣 = 𝑠𝑙𝜆𝑚+1

𝑟 =
𝑑ℳ 𝑏𝑚𝑎𝑥

1 − 𝑣

Basic GCN

ResGCN

𝑣 = 𝑠𝑙𝜆𝑚+1 + 𝛼
𝑟 = 0

APPNP

𝑣 = （1 − 𝛽）𝜆𝑚+1

𝑟 =
𝛽𝑑ℳ 𝐻0
1 − 𝑣

Different Structures

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Training Deeper GNNs

Why do we need deeper GNNs?

Deeper GNNs gain expressive power with larger receptive fields

Can GNNs simply go deeper?

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

How to overcome training dynamics?
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Training Deeper GNNs

Why do we need deeper GNNs?

Deeper GNNs gain expressive power with larger receptive fields

Can GNNs simply go deeper?

Not all. Some underlying reasons prevent GNNs from getting deeper

What impedes GNNs to go deeper?

How to alleviate over-smoothing?

How to overcome training dynamics?
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Training Deeper GNNs

Why do we need deeper GNNs?

Deeper GNNs gain expressive power with larger receptive fields

Can GNNs simply go deeper?

Not all. Some underlying reasons prevent GNNs from getting deeper

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

How to overcome training dynamics?
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Training Deeper GNNs

Why do we need deeper GNNs?

Deeper GNNs gain expressive power with larger receptive fields

Can GNNs simply go deeper?

Not all. Some underlying reasons prevent GNNs from getting deeper

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

Deal with adjacency matrix

Deal with weights

How to overcome training dynamics?
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Training Deeper GNNs

Why do we need deeper GNNs?

Deeper GNNs gain expressive power with larger receptive fields

Can GNNs simply go deeper?

Not all. Some underlying reasons prevent GNNs from getting deeper

What impedes GNNs to go deeper?

Over-smoothing (Graph Specific)

Overfitting (Common)

Training dynamics (Common)

How to alleviate over-smoothing?

Deal with adjacency matrix

Deal with weights

How to overcome training dynamics?

Pair norm

Shortcuts in Structures
96
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Graph in the Real-world Can be Very Large

• Large scale: Large number:

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

https://zinc15.docking.org/
98

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://zinc15.docking.org/
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Three Paradigms

• Why the original GNN fails on large graph?
• Large memory requirement.

• Inefficient gradient update. 

• Three paradigms toward large-scale GNN:

Full
GNN

Sampling

Layer 1

Layer 2

Layer 3

Node-wise Sampling Layer-wise Sampling Graph-wise Sampling

target node

99
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Two issues towards the large-scale GNNs

• How to design efficient sampling algorithm?

• How to guarantee the sampling quality?   

100
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Overview

Acknowledgement: The idea of this slide is taken from: https://drive.google.com/file/d/1Va7WaXOcNS37z779WLbZ-H54mXEJy8cB/view?usp=sharing  

2017 2020

GraphSAGE

Node-wise 

VRGCN

Node-wise 

FastGCN

Layer-wise 

ASGCN

Layer-wise 

ClusterGCN

Graph-wise 

GraphSAINT

Graph-wise 

101
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Node-wise Sampling: GraphSAGE

• The architecture：

𝐡𝒩 𝑣
𝑘 ← AGGREGATEk({𝐡𝑢

𝑘−1, ∀u ∈ 𝒩 𝑣 })

𝒉𝑣
𝑘 ← 𝜎(𝐖k ⋅ CONCAT(𝐡𝑣

𝑘−1, 𝐡𝒩 𝑣 ))

Generalized Aggregator

• Mean aggregator (GCN)

• Pooling aggregator

• LSTM aggregator

• ….. 

Use Concertation instead of 

SUM 

Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs."
102
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Towards large-scale GraphSAGE

Layer 1

Layer 2

Layer 3

Mini-batch training, Batch Size=1

• Sample target nodes as a mini-batch;

• Only consider the nodes that used to 

compute the representation in the batch.

Mini-batch training

Sampled Nodes：1

Sampled Nodes：6

Sampled Nodes：9

neighborhood 

expansion !

Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs."
103
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Towards large-scale GraphSAGE

Layer 1

Layer 2

Layer 3

Mini-batch training, Batch Size=1

• Sample target nodes as a mini-batch;

• Only consider the nodes that used by 

computing the representation in the 

batch.

Mini-batch training

Sampled Nodes：1

Sampled Nodes：6

Sampled Nodes：9

• Sample fixed-size (𝑆𝑖 for layer 𝑖) set of 

neighbors for computing.

• Number of nodes at input layer: 𝑂 𝑉 𝐾 →
𝑂(ς𝑖=1

𝐾 𝑆𝑖)

Fixed-size neighbor sampling

Fix-size neighbor sampling S=2

Layer 1

Layer 2

Layer 3 Sampled Nodes：1

Sampled Nodes：3

Sampled Nodes：5

Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs."
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Node-wise Sampling: GraphSAGE

• Pros:
• Generalized aggregator. 

• Mini-batch training and fixed-size neighbor sampling. 

• Cons:

• Neighborhood expansion on deeper GNNs.

• No guarantees for the sampling quality. 

Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs."
105
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Node-wise Sampling: VR-GCN

• GraphSAGE: NS Sampler

NS𝑢
(𝑙)

≔ 𝑅σ
𝑣∈ 𝒩 𝑙 𝑢

𝑃𝑢𝑣𝒉𝑣
𝑙
, 𝑅 = 𝒩(𝑢)/𝐷(𝑙)

• biased sampling / larger variance → larger sample size 𝒩(𝑙)(𝑢) . 

• Control Variate Based Estimator (CV Sampler):

• Maintain the historical hidden embedding ഥ𝒉𝑣
(𝑙)

for a better estimation.  

• Variance reduction → Variance elimination → Smaller sample size ෝ𝒏(𝒍)(𝒖).

• VR-GCN:

𝑯(𝑙+1) = 𝜎 𝑷 𝑙 𝑯 𝑙+1 − ഥ𝑯 𝑙 + 𝑷ഥ𝑯 𝑙 𝑾(𝑙)

• One more thing: CVD Sampler -- Control Variate for Dropout.

𝒩(𝑢): the neighbor set of node 𝑢.
𝒩 𝑙 𝑢 ⊂ 𝒩(𝑢): the sampled neighbor set of 

node 𝑢 at layer 𝑙.
𝑷: the normalized adjacency matrix.
𝑷(𝑙): the sampled normalized adjacency matrix at 

layer 𝑙.

𝐷(𝑙):the sampled size for each node at layer 𝑙/

Historical hidden 

embedding 
The sampled normalized 

adjacency matrix at layer 𝑙.

106

Chen, Jianfei, Jun Zhu, and Le Song. "Stochastic Training of Graph Convolutional Networks with Variance Reduction."
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Node-wise Sampling: VR-GCN

• Pros:

• Analyze the variance reduction on node-wise sampling.

• Successfully reducing the size of samples.

• Cons:

• Additional memory consuming for storing the historical hidden embeddings.

Chen, Jianfei, Jun Zhu, and Le Song. "Stochastic Training of Graph Convolutional Networks with Variance Reduction."
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Layer-wise Sampling: FastGCN

The i.i.d. node 

sample at each layer

→ bootstrapping

The functional generalization of GCN

𝐿 = 𝐸𝑣~𝑃 𝑔 ℎ 𝑀 𝑣 = න𝑔 ℎ 𝑀 𝑣 𝑑𝑃(𝑣)

The estimation

𝐿𝑡0,𝑡1,…,𝑡𝑀 ≔
1

𝑡𝑀


𝑖=1

𝑡𝑀

𝑔(ℎ𝑡𝑀
𝑀
(𝑢𝑖

(𝑀)
))

Integral Transform

FastGCN: sampling fixed number of nodes at each layer.

108

Chen, Jie, Tengfei Ma, and Cao Xiao. "FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling."
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Layer-wise Sampling: FastGCN

• Towards the variance reduction: importance sampling.

This sampling probability keeps the same for each layer. 

𝐻(0)

𝐻(1)

𝐻(2)

Batch

𝐻(0)

𝐻(1)

𝐻(2)

Full GCN FastGCN
The number of samples per layer:3
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Layer-wise Sampling: FastGCN

• Pros:
• Avoid neighborhood expansion problem. 

• Sample method with quality guarantee. 

• Cons:
• Failed to capture the between-layer correlations.

• Performance compromise. 

Layer 1

Layer 2

Layer 3

FastGCN

The number of samples per layer:3

Chen, Jie, Tengfei Ma, and Cao Xiao. "FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling."

Sampled nodes

Sampling candidates.
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Layer-wise Sampling: ASGCN

• Adaptive layer-wise sampling:

• The sampling probability of lower layers depends on the upper ones.

𝑞 𝑢𝑗 =
𝑝 𝑢𝑗 𝑣𝑖

𝑝 𝑢𝑗 𝑣1…𝑣𝑛
𝑠. 𝑡. 𝑝 𝑢𝑗 𝑣𝑖 =

ො𝑎 𝑣𝑖,𝑢𝑗

𝑁(𝑣𝑖)
, 𝑁 𝑣𝑖 = σ𝑗=1

𝑛 ො𝑎(𝑣𝑖 , 𝑢𝑗)

𝑥 (𝑢𝑗): the node feature of node 𝑢𝑗.

𝑝(𝑢𝑗|𝑣𝑖) :  the probability of sampling node 𝑢𝑗 given node 𝑣𝑖.

ො𝑎(𝑣𝑖 , 𝑢𝑗): The entry of node 𝑣𝑖 and 𝑢𝑗 in re-normalization of 

the adjacency matrix  መ𝐴.

ො𝜇𝑞(𝑣𝑖) : the output hidden embeddings of node 𝑣𝑖.

the probability of sampling 

node 𝑢𝑗 given node 𝑣𝑖.

The entry of node 𝑣𝑖 and 𝑢𝑗 in 

re-normalization of the 

adjacency matrix  መ𝐴.

Layer 1

Layer 2

Layer 3

ASGCN 

The number of samples per layer:3

Sampled node

Sampling candidates.

Sampled node

Sampling candidates.

ASGCN FastGCN

Layer 2

Layer 1

Top-down 

sampling  
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Layer-wise Sampling: ASGCN

• Parameterized for explicit variance reduction.

• Optimize the sampler  𝑞∗(𝑢𝑗) to minimize the variance: 

𝑥 (𝑢𝑗): the node feature of node 𝑢𝑗.

𝑝(𝑢𝑗|𝑣𝑖) :  the probability of sampling node 

𝑢𝑗 given node 𝑣𝑖.

ො𝑎(𝑣𝑖 , 𝑢𝑗): The entry of node 𝑣𝑖 and 𝑢𝑗 in re-

normalization of the adjacency matrix  መ𝐴.

Ƹ𝜇𝑞(𝑣𝑖) : the output hidden embeddings of 

node 𝑣𝑖.

Can be estimated 

by the sampled 

instances.
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Layer-wise Sampling: ASGCN

• Self-dependent shared attention:

• Preserving second-order proximities by skip connections:

• where, ො𝑎𝑠𝑘𝑖𝑝 is estimated by: 

Layer 1

Layer 2

Layer 3

ASGCN

113

Huang, Wenbing, et al. "Adaptive sampling towards fast graph representation learning."



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Layer-wise Sampling: ASGCN

• Pros:
• Good performance. 

• Better variance control. 

• Cons:
• Additional dependence during sampling.

Layer 1

Layer 2

Layer 3

ASGCN

Huang, Wenbing, et al. "Adaptive sampling towards fast graph representation learning."

Top-down 

sampling  
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Graph-wise Sampling: ClusterGCN

• Extract small clusters based efficient clustering algorithms.

• Random batching at the subgraph level.

ClusterGCN

GNN

Clustering Batching
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Graph-wise Sampling: ClusterGCN

• Neighbor expansion control.

Layer 1

Layer 2

Layer 3

ClusterGCN
Fix-size neighbor sampling S=2

Layer 1

Layer 2

Layer 3

Only sample the 

nodes in the clusters

116

Chiang, Wei-Lin, et al. "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks."



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Graph-wise Sampling: ClusterGCN

• Pros:
• Good performance / Good memory usage.

• Alleviate the neighborhood expansion problem in traditional mini-batch training.

• Cons:
• Empirical results without analyzing the sampling quality. 

Chiang, Wei-Lin, et al. "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks."
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Graph-wise Sampling: GraphSAINT

• Directly sample a subgraph for mini-batch training according to 
subgraph sampler.

• Sampler construction

Sample edge with probably 

𝑝𝑢,𝑣 ∝ 1/𝑑𝑢 + 1/𝑑𝑣

Edge sampler

Uniformly sample nodes.

Node sampler

1 2

3

1 2

3

Sample edge with probably 𝑝𝑢,𝑣 ∝
𝑩𝑢,𝑣 +𝑩𝑣,𝑢

• 𝐵𝑢,𝑣: the probability of a random 

walk to start at u and end at v in 

L hops.

Random walk sampler
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Graph-wise Sampling: GraphSAINT

• How to eliminate the bias introduce by the sampler?
• Loss normalization: 

ℒbatch = σ𝑣∈𝐺𝑠
𝐿𝑣/𝜆𝑣 , 𝜆𝑣 = 𝑉 𝑝𝑣.

• Aggregation normalization:

𝑎 𝑢, 𝑣 = 𝑝𝑢,𝑣/𝑝𝑣

𝑝𝑣: the probability of a node 

𝑣 ∈ 𝑉 being sampled.

𝑝𝑢,𝑣: the probability of an edge 

𝑢, 𝑣 ∈ 𝐸 being sampled. 
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Graph-wise Sampling: GraphSAINT

• How to reduce the sampling variance?
• The optimal edge probability for variance minimization:

𝑝𝑢,𝑣 ∝ 1/𝑑𝑢 + 1/𝑑𝑣

𝑝𝑣: the probability of a node 

𝑣 ∈ 𝑉 being sampled.

𝑝𝑢,𝑣: the probability of a edge 

𝑢, 𝑣 ∈ 𝐸 being sampled. 
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Graph-wise Sampling: GraphSAINT

Zeng, Hanqing, et al. "GraphSAINT: Graph Sampling Based Inductive Learning Method."

• Highly flexible and extensible 

(graph samplers, GNN 

architectures, etc. )

• Good performance (accuracy, 

speed)
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Summary

2017 2020

Acknowledgement: The idea of this slide is taken from: https://drive.google.com/file/d/1Va7WaXOcNS37z779WLbZ-

H54mXEJy8cB/view?usp=sharing  

GraphSAGE

Node-wise 

[o] Theory

[o] Performance

[o] Efficiency 

VRGCN

Node-wise 

[+] Theory

[o] Performance

[-] Efficiency 

FastGCN

Layer-wise 

[+] Theory

[-] Performance

[+] Efficiency 

ASGCN

Layer-wise 

[+] Theory

[o] Performance

[+] Efficiency 

ClusterGCN

Graph-wise 

[-] Theory

[+] Performance

[o] Efficiency 

GraphSAINT

Graph-wise 

[o] Theory

[+] Performance

[+] Efficiency 

[+]: Good

[o]: OK

[-]: Bad 

Future Directions

More efficient sampling..

Heterogenous/Dynamic graph…

System deployment …

Complex GNN architectures…

….
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What we discussed before are supervised

Graph Neural Network

GNN 𝑋, 𝐴 Preds

Training Loss

Labels

• Labels are scarce, e.g. molecular property

• Training/Testing tasks are Non I.I.D. 
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Existing Self-Supervised GNNs

Node-Classification Graph-Classification

Predictive Methods
VGAE [1], EP-B [2], 

GraphSAGE [3]

N-gram Graph [4], PreGNN

[5] , GCC [6], GROVER [7]

Information-based 

Methods
DGI [8], GMI [9] InfoGraph [10]

[1] Kipf & Welling 2016; [2] Durán & Niepert 2017; [3] Hamilton et al. 2017; 

[4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020; 

[8] Veliˇckovi´c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020  
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“In self-supervised learning, the system learns to predict part 

of its input from other parts of its input.”  ---- by Yann Lecun

Graphs are highly structured!
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Node classification

• Two typical ways to formulate training loss

ℎ𝑢 ℎ𝑣

I. Enforcing 

Adjacent Similarity

ℎ𝑣~ℎ𝑣
II. Reconstruction 

from Neighbors

VGAE, 

GraphSAGE

EP-B ℎ𝑢1

ℎ𝑢3

ℎ𝑢2
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I Enforcing Adjacent Similarity

• GraphSAGE (Hamilton et al. 2017)

min − 𝐸𝒖∼𝑵 𝒗 log 𝜎 ℎ𝑇𝑢ℎ𝑣 − 𝜆𝐸𝒗𝒏∼𝑷𝒏 𝒗 [log(𝜎 −ℎ𝑇𝑣𝑛ℎ𝑣 )]

Enforcing nearby nodes to have similar representations, while 

enforcing disparate nodes to be distinct:
ℎ𝑢

ℎ𝑣

ℎ𝑢

ℎ𝑣𝑛

ℎ𝑣: representation of target node;

ℎ𝑢: representation of neighbor/positive node;

ℎ𝑣𝑛: representation of disparate/negative node;

𝑃𝑛(𝑣): negative sampling. 

Positive Samples Negative Samples
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II Reconstruction from neighbors

• EP-B (Durán & Niepert, 2017)

min 

𝑢∈𝑉\{𝑣}

[𝛾 + 𝑑 ෩𝒉𝒗, ℎ𝑣 − 𝑑 ෩𝒉𝒗, ℎ𝑢 ]+

ℎ𝑣: representation of target node;

ℎ𝑢: representation of nodes except 𝑣;
෩𝒉𝒗: AGG(ℎ𝑙|𝑙 ∈ 𝑁(𝑣)) is the reconstruction from neighbors;

𝛾: the bias

The objective is to minimize the reconstruction error (regulated 

by the error to other nodes): 

ℎ𝑣~ℎ𝑣

ℎ𝑢1

ℎ𝑢3

ℎ𝑢2

Positive 

Samples

Negative 

Samples

Hinge loss
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How about graph classification/regression?

Toxicity?

Solubility?

…
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N-Gram Graph

• (Liu et al. 2019)

Stage I: Node Representation Stage II: Graph Representation

First learn node representations by CBoW-

like pipeline

ℎ𝑣

𝑓𝑝 = ς𝑖∈𝑝 ℎ𝑖 ;

ℎ𝑢1

ℎ𝑢2

ℎ𝑢3
ℎ𝑢4

For all n-gram paths: 

𝑓(𝑛) =
𝑝∈n−gram

𝑓𝑝

𝐹 = [𝑓 1 , … , 𝑓(𝑇)]

ℎ𝑣ℎ𝑢1

ℎ𝑢2

ℎ𝑢4
ℎ𝑢3

Graph Representation:

Equivalent to a GNN that needs no training
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PreGNN: node- and graph-level pretraining

• (Hu et al. 2020)

ℎ𝑣ℎ𝑢1

ℎ𝑢2

ℎ𝑢3
ℎ𝑢4

ℎ𝑣ℎ𝑢1

ℎ𝑢2

ℎ𝑢4
ℎ𝑢3

First learn node representations by Context 

Prediction or Attribute Masking

Then perform graph-level multi-task Supervised 

Training

𝑚𝑖𝑛 CrossEntropy(ℎ𝐺 , 𝑦𝐺)

ℎ𝐺 = Readout(ℎ𝑣|𝑣 ∈ 𝐺)

Both node- and graph- level training are crucial!

Stage I: Node Representation Stage II: Graph Representation

132
Hu et al. Strategies for Pre-training Graph Neural Networks.
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PreGNN

• (Hu et al. 2020)

Context Prediction
Attribute Masking

min− log 𝜎 (ℎ𝑣
𝐾)𝑇𝐶𝑣

𝐺 − 𝐼(𝑣 ≠ 𝑣′)𝑙𝑜𝑔(1 − 𝜎((ℎ𝑣
𝐾)𝑇 𝐶𝑣′

𝐺′))

ℎ𝑣
𝐾

: K-hop information

𝐶𝑣
𝐺: Structures between 

r1 and r2 -hop

Positive Samples

Enforcing node representation to be similar to its contextual structures: 

Negative Samples Degenerates to EP-B, 

if r1=0, r2=K=1

Stage I: Node Representation
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PreGNN

• (Hu et al. 2020)

Context Prediction
Attribute Masking

Mask random node/edge attribute and predict it, just like Bert: 

𝑥𝑢1

𝑥𝑢2

𝑥𝑢4
𝑥𝑢3

MASK GNN(𝐴, 𝑋)
𝑥𝑣

𝑣

Stage I: Node Representation

134
Hu et al. Strategies for Pre-training Graph Neural Networks.
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GCC: contrastive learning

• (Qiu et al. 2020)

Both N-Gram Graph and PreGNN do not perform graph-level

unsupervised training:

min− log
exp(𝑞𝑇𝑘+/𝜏)

σ𝑖=0
𝐾 exp(𝑞𝑇𝑘𝑖/𝜏)

𝑞: representation of different graphs;

𝑘: key of different graphs;

𝑘+: positive key generated by random graph perturbation

𝜏: temperature

But, GCC only conducts graph-level pre-training, without node-

level distinguishment  
135

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. 



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

GROVER (Rong et al. 2020)

Methods
Node-Level

Self-Supervised

Graph-Level

Self-Supervised

N-Gram Graph

PreGNN

GCC

Grover
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GROVER

• (Rong et al. 2020)

Predicting node/edge contexts instead of node labels can better 

capture local structures  (multi-label)

Stage I: Node/Edge-level pretraining

137
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GROVER

• (Rong et al. 2020)

Stage II: Graph-level pretraining

Predicting a graph if contains pre-defined graph motifs.

138
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dyMPNdyMPNdyMPNdyMPNdyMPNdyMPN

Multi-Head Attention

LayerNorm

Feed Forward

Node Embed

Add & Norm

Agg2Node

dyMPN

Q K V

dyMPN dyMPN

Input Graph

Feed Forward

Edge Embed

Add & Norm

Agg2Edge

Concat & Norm Concat & Norm

GROVER

• One more thing: GTransformer

We build a more expressive and transformer-alike model: GTransformer

1-hop MPNN K-hop MPNN
……

Sample a random-hop MPNN at each iteration

ℎ, e

𝑚

ℎ

ℎ, e

𝑚

ℎ

𝐾 − 1

• MPNN: Extract local structural information of graphs.
• dyMPN: Randomize the message passing hops for the 

dynamic receptive field modeling. 

• Multi-Head Attention: model global interaction 
between nodes/edges. 

• Long-range Residual Connection:  alleviating  
the vanishing gradient and over-smoothing.

• Output for both node embedding and edge 
embedding.

Better 

generalization 

ability
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We pre-train GROVER with 100 million parameters on 

10 million unlabeled molecules collected from ZINC15 

and Chembl

140
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GROVER

Molecular classification

141
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Existing Self-supervised models

[1] Kipf & Welling 2016; [2] Durán & Niepert 2017; [3] Hamilton et al. 2017; 

[4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020; 

[8] Veliˇckovi´c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020  

Node-Classification Graph-Classification

Predictive Methods
VGAE [1], EP-B [2], 

GraphSAGE [3]

N-gram Graph [4], PreGNN

[5], GCC [6], GROVER [7]

Information-based 

Methods
DGI [8], GMI [9] InfoGraph [10]
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What makes a good representation?

“One natural criterion that we may expect any good representation to meet, at least to some degree, 

is to retain a significant amount of information about the input.” by Vincent et al. 2010

𝑋 Encoder 𝑌

Input Representation

Decoder 𝑋′

Reconstruction

Auto-Encoder (AE)

Hinton & Salakhutdinov 2006; Vincent et al. 2010 
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What makes a good representation?

• A more direct way, other than AE?
• Yes, Mutual Information (MI). 

𝐼 𝑋; 𝑌 = 𝐷𝐾𝐿(𝑝 𝑋 𝑝(𝑌)||𝑝(𝑋, 𝑌))
= 𝐻 𝑋 − 𝐻(𝑋|𝑌)

Entropy Conditional Entropy

⚫ 0 ≤ 𝐼 𝑋; 𝑌 ≤ 𝐻 𝑋 or H(Y);

⚫ 𝐼 𝑋; 𝑌 = 0 iff 𝑋 and 𝑌 are independent random variables;

⚫ 𝐼 𝑋; 𝑌 = 𝐻 𝑋 = 𝐻(𝑌), if 𝑋 and 𝑌 are determinately related, i.e. 𝐻 𝑋 𝑌 = 0
144



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

AE is a lower bound of MI

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 ≥ 𝐻 𝑋 − 𝑅(𝑋|𝑌)

Mutual Information Reconstruction error

(Hjelm et al. 2019)

Computing MI is hard and not end-to-end, until recently (CPC, Oord et al., 2018; MINE, 

Belghazi et al., 2018; Nowozin et al., 2016; Hjelm et al. 2019)
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Estimating/Maximizing MI (Hjelm et al. 2019)

𝐼MINE 𝑋; 𝑌 ≜ 𝐸𝑝(𝑋,𝑌) 𝑇𝑤 𝑥, 𝑦 − log𝐸𝑝 𝑋 𝑝(𝑌)[exp(𝑇𝑤 𝑥, 𝑦 )]

MINE (Belghazi et al., 2018)：

𝐼JSD 𝑋; 𝑌 ≜ 𝐸𝑝 𝑋,𝑌 log 𝜎 𝑇𝑤 𝑥, 𝑦 + 𝐸𝑝 𝑋 𝑝 𝑌 [log(1 − 𝜎 𝑇𝑤 𝑥, 𝑦 )]

JSD MI estimator (Nowozin et al., 2016)：

𝐼NCE 𝑋; 𝑌 ≜ 𝐸𝑝 𝑋,𝑌 [log
exp𝑇𝑤 𝑥, 𝑦

σ𝑥′~𝑝(𝑋) exp 𝑇𝑤 𝑥′, 𝑦
]

infoNCE MI estimator (Oord et al., 2018)：

𝑿, 𝒀 max
𝑇𝑤

መ𝐼𝑇𝑤 𝑋; 𝑌 → max 𝐼(𝑋; 𝑌)𝑇𝑤 መ𝐼𝑇𝑤 𝑋; 𝑌
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Deep Graph Infomax (DGI)

• (Velickovic et al. 2019)

GNN𝑿,𝑨 ℎ𝑖

MI maximization

max
GNN

𝐼 𝑋, 𝐴; ℎ𝑖 ≈ max log(𝐷 ℎ𝑖; 𝑿, 𝑨 ) + log(1 − 𝐷(෨ℎ𝑖; 𝑿, 𝑨))

ℎ𝑖 = GNN(𝑋, 𝐴) ෨ℎ𝑖 negative sample

The JSD MI estimator is applied：
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Deep Graph Infomax (DGI)

GNN

GNN

Clean Inputs

Corrupted Inputs

Readout

max
GNN

𝐼 𝑋, 𝐴; ℎ𝑖 = m𝑎𝑥
GNN

log(𝐷 ℎ𝑖; 𝒔 ) + log(1 − 𝐷(෨ℎ𝑖; 𝒔))

It is hard to directly compute 𝐷(෨ℎ𝑖; 𝑿, 𝑨), thus DGI resorts to readout 𝒔 = 𝑅(𝑿, 𝑨): 

max
𝐺𝑁𝑁

𝐼 𝑋, 𝐴; ℎ𝑖 ≈ max log(𝐷 ℎ𝑖; 𝑿, 𝑨 ) + log(1 − 𝐷(෨ℎ𝑖; 𝑿, 𝑨))
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Deep Graph Infomax (DGI)

It can be proved that, if the readout 𝑠 = 𝑅(𝑋, 𝐴) is injective,

log 𝐷 ℎ𝑖; 𝒔 + log 1 − 𝐷 ෨ℎ𝑖; 𝒔 = log 𝐷 ℎ𝑖; 𝑿, 𝑨 + log 1 − 𝐷 ෨ℎ𝑖; 𝑿, 𝑨

It can be also proved that, if 𝑿 = |𝒔| is finite,

max log 𝐷 ℎ𝑖; 𝒔 + log 1 − 𝐷 ෨ℎ𝑖; 𝒔 = max 𝐼(ℎ𝑖; 𝑋, 𝐴)
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• Some issues in DGI

➢ Computing MI requires the injectivity of readout function

➢ It resorts to graph corruption to generate negative samples

➢ Distinct encoders and corruption functions for different tasks
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GMI: Graphical Mutual Information

• (Peng et al. 2020)

The basic idea of GMI is to compute the MI directly.
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Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

GMI: Graphical Mutual Information

The basic idea of GMI is to compute the MI directly.

𝐼 𝑋, 𝐴; ℎ𝑖 ≈ 𝐼 𝑋; ℎ𝑖 + 

𝑗∈𝑁(𝑖)

𝐼(𝜎(ℎ𝑖
𝑇ℎ𝑗); 𝐴𝑖𝑗)

Feature MI Topology MI

➢ It is both feature- and edge- aware;

➢ No need to readout or corruption;

➢ Feature MI can be further decomposed;

We define that,
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GMI: Graphical Mutual Information

• (Peng et al. 2020)

It can be proved that, if certain mild condition meets,

𝐼 𝑋; ℎ𝑖 = σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝐼(𝑥𝑗; ℎ𝑖),  for 0 ≤ 𝑤𝑖𝑗 ≤ 1

The global MI is decomposed into a weighted sum of local MIs.

It is not a bad idea to let 𝑤𝑖𝑗 = 𝜎(ℎ𝑖
𝑇ℎ𝑗)

We then apply the JSD MI estimator to compute 𝐼(𝑥𝑗; ℎ𝑖) and 

𝐼(𝜎(ℎ𝑖
𝑇ℎ𝑗); 𝐴𝑖𝑗)
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GMI: Graphical Mutual Information

• Node Classification

We use a universal backbone (GCN) for all tasks, different from DGI

Codes:  https://github.com/zpeng27/GMI
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GMI: Graphical Mutual Information

• Link Prediction

We use an universal backbone (GCN) for all tasks

Codes:  https://github.com/zpeng27/GMI
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Summarization

• Node classification
• EP-B, GraphSAGE

• DGI，GMI

• Graph classification
• N-gram Graph, PreGNN, GCC, Grover

• InfoGraph

Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation 

Learning via Mutual Information Maximization, ICLR 2020 
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GNN in Social Networks

• "Semi-supervised graph classification: A hierarchical graph 
perspective." WWW 2019

• "Rumor Detection on Social Media with Bi-Directional Graph 
Convolutional Networks." AAAI 2020
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Hierarchical Graph Classification

• Hierarchical Graph: A set of graph instances are interconnected via edges.
• Social network with group structure.

• Document (graph-of-words) collection with citation relation.

• The Problem:  predicts the class label of graph instances in a hierarchical graph.

Label: Bad

Group A

Label: Good

Group B

Label: ???

Group C

Label: ???

Group D

A B

C D

Connections between 
graph instances

: Group

: User 

Hierarchical Graph
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Hierarchical Graph Classification

• The Problem:  predicts the class label of graph instances in a hierarchical graph.

• Challenges: 
• How to represent the graphs with arbitrary size into a fixed-length vector?

• How to incorporate the information of instance level and hierarchical level?

Label: Bad

Group A

Label: Good

Group B

Label: ???

Group C

Label: ???

Group D

A B

C D

Connections between 
graph instances

: Group

: User 

Hierarchical Graph
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Self-Attentive Graph Embedding

• How to represent the graphs with arbitrary size into a fixed-length vector?

• Graph representation learning at different level:

• Node Level: 𝐺(𝑉, 𝐸) → 𝐻𝑛×𝑣

• Graph Level: 𝐺(𝑉, 𝐸) → 𝑒𝑣

• SAGE：Self-Attentive Graph Embedding

• Size invariance  ---- Self-attention 

• Permutation invariance ---- GCN Smoothing

• Node importance  ---- Self-attention

• Self-attention 𝑆 : 𝑟 opinions about node importance.

GCN GCN

𝑒 ∈ ℝ𝑟×𝑣

Embedding

Matrix

+ Softmax𝐻 ∈ ℝ𝑛×𝑣

𝑆 ∈ ℝ𝑟×𝑛

Self Attention

𝐻 ∈ ℝ𝑛×𝑣

GCN Smoothing
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The Unified Model

• How to incorporate the information of instance level and hierarchical level?

• Instance Level Model : Graph Level Learning (SEGA)

• Hierarchical Level Model: Node Level Learning (GCN)

• Feature Sharing: Concatenate the output of SEGA to the input of GCN.

• Disagreement Loss：The disagreement between instance classifier and hierarchical classifier should be 
minimized. 

𝑔1 𝑔2

𝑔3 𝑔4

𝑔1 𝑔2

𝑔3 𝑔4

Hierarchical 
Level

Instance Level

Hierarchical 
Classifier

Instance
Classifier 

𝛾4

𝜓4

𝐷𝐾𝐿 (𝜓4||𝜙4)

Disagreement Loss

ℒ(𝑦4, 𝛾4)
Node Classification Loss

ℒ(𝑦4, 𝜓4)
Graph Classification Loss

Feature 

Sharing
𝑒4

Hierarchical Graph

The overall loss: 

The supervised loss: 

The disagreement loss: 
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One More Thing: SEAL-AI/CI

• How to deal with the small mount of class label?

• Semi-supervised Graph Classification (SEAL)

• Active Learning Setting (SEAL-AI): Choose the instances with large 
disagreement loss to annotate.

𝑒1
𝑒2

𝑒3 𝑒4

D𝐾𝐿 (𝛾𝑖||𝜓𝑖)Input Layer

Graph-based Classification

𝛾4

Output Layer

𝛾3

𝛾1 𝛾2

𝑒4

FC Layer

SAGE

Discriminative Graph Embedding

𝜓4
ො𝑦

Annotated 

Labels

𝑔1 𝑔2

𝑔3 𝑔4

External 
Annotation

163
Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

SEAL-AI/CI

• How to deal with the small mount of class label?

• Semi-supervised Graph Classification (SEAL)
• Cautious Iteration Setting (SEAL-CI): Choose the instances 

with maximum predicted probability and annotate them with the 
predicted class label.

𝑒1
𝑒2

𝑒3 𝑒4

ℎ(Γ)
Input Layer

Graph-based Classification

𝛾4

Output Layer

𝛾3

𝛾1 𝛾2

𝑒4

FC Layer

SAGE

Discriminative Graph Embedding

𝜓4 ො𝑦

Labels for 

Cautious 

Iteration

𝑔1 𝑔2

𝑔3 𝑔4
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Performance of SAGE

• Performance of synthesized graphs • Performance on the protein classification task:

Two-dimensional visualization of graph embeddings 

generated from the synthesized graph instances using 

SAGE.
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Performance of SEAL

• The visualization of the hierarchical 
graph for a “game” group. 

• Real Datasets
• User-Group Data

• # of users: 18M

• # of groups: 37K

• Target: Predicting group label.
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GNN in Social Networks

• "Semi-supervised graph classification: A hierarchical graph 
perspective." WWW 2019

• "Rumor Detection on Social Media with Bi-Directional Graph 
Convolutional Networks." AAAI 2020
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Bi-GCN: Rumor Detection

• Rumor tree: rumors spread like a tree in the social network. Rumor 
has two major characteristics:

• Propagation: deep spread along a relationship chain

• Dispersion: widespread across a social community

Rumor Tree Propagation Dispersion
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Bi-GCN: Rumor Detection

• Bi-directed GCN:
1. Construct directed Propagation and Dispersion graphs for rumors

2. Calculate high-level node representations via GCNs

3. Concatenate root features to enhance the performance

4. Classify rumors from Representations of propagation and dispersion 
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Bi-GCN: Rumor Detection: results

• We tested on 3 datasets:
• Twitter15

• Twitter16

• Weibo
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Bi-GCN: Rumor Detection: early detection

• Early detection of rumors

171

Github: https://github.com/TianBian95/BiGCN

Bian, Tian, et al. "Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks." AAAI 2020.
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GNN in Medical Imaging

• "Graph CNN for Survival Analysis on Whole Slide Pathological 
Images", MICCAI 2018

• "Graph Convolutional Nets for Tool Presence Detection in 
Surgical Videos", IPMI 2019

• "Graph Attention Multi-instance Learning for Accurate 
Colorectal Cancer Staging", MICCAI 2020

173



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

• Survival Prediction

• Predict the risk of a certain event occurs.

• Event: part failure, drug adverse reaction or death.

• Application: provides suggestion for clinical interventions 

• Whole Slide Images

• Large: single WSI size >0.5 GB.

• Complicated: millions of cells.

• Combine local and global features.
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• Cox proportional hazard function

• Partial likelihood for event happens on subject i :

where, Y is the observation time. 

• Join likelihood of all subjects:

• Log likelihood as object function: 
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• Pathological Images and Patient Survival Time and Label

• TCGA, The Cancer Genome Atlas 

• NLST, National Lung Screening Trials 

• Evaluation Metrics- C-index: the fraction of all pairs of patients whose predicted 
survival times are correctly ordered.
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• Yellow regions： high attention values

• High attention patches : values > 0.9 (attention values (0, 1))
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* Use our graph features for the survival model. 179
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Future Directions

Future Directions

Graph Defense

Hypergraph

Graph Multi-instance Learning 

Inverse Graph Identification

Graph Attack

Hierarchical Graph

https://en.wikipedia.org/wiki/Hypergraph

Subgraph Recognition
"Inverse Graph Identification: Can We Identify Node 

Labels Given Graph Labels?." arXiv preprint 
arXiv:2007.05970 (2020).

Attn

: Group
: User 

180

https://en.wikipedia.org/wiki/Hypergraph


Bibliography



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Bibliography

• Sperduti, Alessandro, and Antonina Starita. "Supervised neural networks for the classification of structures." IEEE Transactions on Neural Networks 8.3 (1997): 714-735.

• Gori, Marco, Gabriele Monfardini, and Franco Scarselli. "A new model for learning in graph domains." Proceedings. 2005 IEEE International Joint Conference on Neural 

Networks, 2005.. Vol. 2. IEEE, 2005.

• Scarselli, Franco, et al. "The graph neural network model." IEEE Transactions on Neural Networks 20.1 (2008): 61-80.

• Li, Yujia, et al. "Gated graph sequence neural networks." arXiv preprint arXiv:1511.05493 (2015).

• Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in neural information 

processing systems. 2016.

• Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." arXiv preprint 

arXiv:1503.00075 (2015).

• Bruna, Joan, et al. "Spectral networks and locally connected networks on graphs." arXiv preprint arXiv:1312.6203 (2013).

• Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning convolutional neural networks for graphs." International conference on machine learning. 2016.

• Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

• Xu, Bingbing, et al. "Graph Wavelet Neural Network." International Conference on Learning Representations. 2018.

• Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems. 2019.

• Liao, Renjie, et al. "LanczosNet: Multi-Scale Deep Graph Convolutional Networks." International Conference on Learning Representations. 2018.

• Veličković, Petar, et al. "Graph Attention Networks." International Conference on Learning Representations. 2018.

• Zhang, Jiani, et al. "Gaan: Gated attention networks for learning on large and spatiotemporal graphs." arXiv preprint arXiv:1803.07294 (2018).

• Chang, Heng, et al. "Spectral Graph Attention Network." arXiv preprint arXiv:2003.07450 (2020).

• Ying, Zhitao, et al. "Hierarchical graph representation learning with differentiable pooling." Advances in neural information processing systems. 2018.

• Ma, Yao, et al. "Graph convolutional networks with eigenpooling." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 

2019.

• Atwood, James, and Don Towsley. "Diffusion-convolutional neural networks." Advances in neural information processing systems. 2016.

• Abu-El-Haija, Sami, et al. "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing." International Conference on Machine Learning. 2019.

• Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann. "Predict then Propagate: Graph Neural Networks meet Personalized PageRank." International 

Conference on Learning Representations. 2018.

• Gilmer, Justin, et al. "Neural Message Passing for Quantum Chemistry." ICML. 2017.

• Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective." The World Wide Web Conference. 2019.



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Bibliography

• Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Advances in neural information processing systems. 2017.

• Chen, Jianfei, Jun Zhu, and Le Song. "Stochastic Training of Graph Convolutional Networks with Variance Reduction." International Conference on Machine Learning. 2018.

• Chen, Jie, Tengfei Ma, and Cao Xiao. "FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling." International Conference on Learning 

Representations. 2018.

• Huang, Wenbing, et al. "Adaptive sampling towards fast graph representation learning." Advances in neural information processing systems. 2018.

• Chiang, Wei-Lin, et al. "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks." Proceedings of the 25th ACM SIGKDD International 

Conference on Knowledge Discovery & Data Mining. 2019.

• Zeng, Hanqing, et al. "GraphSAINT: Graph Sampling Based Inductive Learning Method." International Conference on Learning Representations. 2020.

• Morris et al. Weisfeiler and Leman Go Neural Higher-order Graph Neural Networks. AAAI, 2019.

• Xu et al. How Powerful Are Graph Neural Networks. ICLR, 2019.

• Maron et al. Invariant and Equivariant Graph Networks. ICLR, 2019.

• Maron et al. On the Universality of Invariant Networks. ICML, 2019.

• Maron et al. Provably Powerful Graph Networks, NeurIPS. 2019.

• Dehmamy et al. Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology. NeurIPS, 2019.

• Sato et al. Approximation Ratios of Graph Neural Networks for Combinatorial Problems. NeurIPS, 2019.

• Loukas, What graph neural networks cannot learn: depth vs width. ICLR, 2020.

• Garg et al. Generalization and Representational Limits of Graph Neural Networks. ICML, 2020.

• Shervashidze et al. Weisfeiler-Lehman Graph Kernels. JRML, 2011.

• Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314, 1989.

• Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991.

• Chen et al. On the equivalence between graph isomorphism testing and function approximation with GNNs. NeurIPS, 2019.

• Kipf & Welling. Variational Graph Auto-Encoders. arXiv, 2016.

• Durán & Niepert. Learning Graph Representations with Embedding Propagation. NeurIPS, 2017.

• Liu et al. N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules. NeurIPS, 2019.

• Hu et al. Strategies for Pre-training Graph Neural Networks. ICLR, 2020.

• Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD, 2020.

• Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data. arXiv, 2020.

• Veličković et al. Deep Graph Infomax. ICLR, 2019.

• Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization. WWW, 2020.

• Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR, 2020.



Yu Rong, Wenbing Huang, Tingyang Xu, Hong Cheng, Junzhou Huang 2020

Deep Graph Learning: Foundations, Advances and Applications

Bibliography

• Hinton, G. E., & Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks. Science, 2006.

• Vincent et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. JMLR, 2010.

• Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. NeurIPS, 2018.

• Belghazi et al. Mine: mutual information neural estimation. ICML, 2018.

• Nowozin et al. f-gan: Training generative neural samplers using variational divergence minimization. NeurIPS, 2016.

• Hjelm et al. Learning deep representations by mutual information estimation and maximization. ICLR, 2019.

• Wang, X., & Gupta, A. Videos as Space-Time Region Graphs. ECCV, 2018.

• Yan et al. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI, 2018.

• Zeng, et al. Graph convolutional networks for temporal action localization. ICCV, 2019

• Bian, Tian, et al. "Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks." AAAI 2020.


