

GeoEnsemble for Open Catalyst Challenge 2022

Jiaqi Han (intern), Tian Bian (intern), Geyan Ye, Kaili Ma (intern), Yuduo Zhi, Kangfei Zhao, Tingyang Xu, Wenbing Huang, Yu Rong

- Tencent AI Lab
- Tsinghua University
- Renmin University of China
- The Chinese University of Hong Kong,

Energy Scarcity and Climate Change

Energy Scarcity and Climate Change

.

Wind farm in Xinjiang, China

Source: Our World in Data based on BP Statistical Review of World Energy & Ember (2021) Note: 'Other renewables' includes biomass and waste, geothermal, wave and tidal.

Energy Scarcity and Climate Change

Discovery of catalyst for Efficient Energy Storage

Energy Scarcity and Climate Change

Discovery of catalyst for Efficient Energy Storage

Initial state High energy

Adsorbate and catalyst atoms exert force on each other and move around

Relaxed state Low energy

Can be used to determine reaction rate

Initial

Relaxed

[3] https://github.com/Open-Catalyst-Project/ocp/blob/main/tutorials/OCP_Tutorial.ipynb.
 [4] Zitnick C L, Chanussot L, Das A, et al. An introduction to electrocatalyst design using machine learning for renewable energy storage[J]. arXiv preprint arXiv:2010.09435, 2020.

Challenges

How to model the complex mechanisms of the dynamics of particles ?

How to incorporate the S2EF and IS2RE data.

GMN-OC: Adaptation of GMN on OC data

• Basic layers:

Universal multi-channel O(3)-equivariant function^[1]:

 $\varphi(\vec{Z},h) = \vec{Z}\sigma(\vec{Z}^{\top}\vec{Z},h), \quad (O(3)\text{-equivariant case})$ $\psi(\vec{Z},h) = \gamma(\vec{Z}^{\top}\vec{Z},h). \quad (O(3)\text{-invariant case})$

GMN Layer:

$$\vec{Z}_{ij} = \begin{bmatrix} \vec{Z}_i - \vec{Z}_j, \vec{r}_{ij} \end{bmatrix},$$

$$h_{ij} = \begin{bmatrix} h_i, h_j, G(||\vec{r}_{ij}||) \end{bmatrix},$$

$$\vec{M}_{ij} = \varphi(\vec{Z}_{ij}, h_{ij}),$$

$$\vec{Z}'_i = \vec{Z}_i + \sum_{j \in \mathcal{N}(i)} \vec{M}_{ij}.$$

 $G(\cdot)$: Guassian basis function

GMN-OC: Towards larger capacity of GMN

• 1. Stacking multiple layers:

$$\vec{Z_i} = \vec{0} \Longrightarrow \qquad \text{GMN Layer} \xrightarrow{\Longrightarrow} \qquad \text{GMN Layer} \qquad \cdots \qquad \text{GMN Layer} \xrightarrow{\Longrightarrow} \vec{F_i} = Pool(\{h_i\}_{i=1}^N)$$

• 2. Global shared representation:

Global shared representation module:

Combination layer:

Global Representation

E

F;

GMN-OC: Towards larger capacity of GMN

• 3. Multi-head GMN Layer:

H is the number of vector channels.

n_head is the number of heads.

We can significantly increase the number of channels for multi-head GMN layer.

The Overall Model: GeoEnsemble

Model	Туре	# of Params
GMN-OC	Relaxation	81M
SCN-S2EF	Relaxation	124M
GemNet-OC	Relaxation	38M
SCN-IS2RE	Direct	168M

Training & Inference Details

Model	Туре	Dataset	# of Params	GPUs	Training GPU Hours	Inference GPU Hours
GMN-OC	Relaxation	S2EF-2M	81M	V100	3200 Hours	128 Hours
GemNet-OC	Relaxation	S2EF-2M	38M	V100	1060 Hours	144 Hours
SCN-S2EF	Relaxation	S2EF-2M	124M	A100	3072 Hours	105.6 Hours
SCN-IS2RE	Direct	Pretrain: S2EF-2M Finetune: IS2RE-460K	168M	A100	4096 Hours 896 Hours	4.2 Hours

Public Leaderboard

TEAM	METHOD	EWT (%)	ENERGY MAE (EV)	SUBMITTED
FAIR +CMU	SCN (relaxation)	14.25	0.3221	2022/5/19
TTRC	GeoEnsemble (Relax, S2EF-2M data)	10.11	0.3428	2022/11/1
TUM + FAIR	GemNet-OC-Large-force relaxations + GemNet-OC-Large- energy	14.97	0.3477	2022/7/14
FAIR + NERSC	GemNet-XL	11.13	0.3712	2021/9/27
TUM + FAIR	GemNet-T-EFwT-Relaxation-All	9.86	0.3997	2021/8/23
TTRC	GMN-OC, Relaxation, S2EF-2M data	8.2	0.4212	2022/10/15
FAIR + CMU	spinconv-force-centric-relaxation-all	7.9	0.4343	2021/6/3
FAIR + NERSC	GemNet-XL (Finetuned)	5.6	0.4623	2021/10/5
Atomic Architects MIT	Equiformer (IS2RE training data only with IS2RS and Noisy Nodes. Direct.)	5.66	0.466	2022/5/20
Machine Learning	3d-Graphormer (Direct, IS2RE data only)	6.1	0.4722	2021/10/6
Deep Mind	GNS + Noisy Nodes (IS2RE Only)	6.5	0.4728	2022/2/15

The data is collected on 2022-11-08.

Things tried but do not work yet

- Sophisticated design of components in Transformer.
- Prediction with gas energy.
- Elastic network loss.

The Lessons

• Different relaxation strategy.

Things worked but haven't been applied to the solution

- Finetuning with Fake IS2RE data from S2EF dataset.
- Recycle module in model design.

Future Directions

- More inspirations from the real physical process.
- More exploitations of the existing data.
- Training process optimization.

Jiaqi Han

Tian Bian

Geyan Ye

Kaili Ma

Yuduo Zhi

Kangfei Zhao

Tingyang Xu

Wenbing Huang

Yu Rong

香港中文大學 The Chinese University of Hong Kong

