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Abstract

In this paper, we present directional skip-
gram (DSG), a simple but effective en-
hancement of the skip-gram model. By
introducing an additional vector to explic-
itly distinguish left and right context in
word prediction, each word’s embedding
is learned by not only word co-occurrence
patterns in its context, but also the direc-
tions of its contextual words. Compared to
other extensions of the skip-gram model,
our model has lower complexity and there-
fore can be trained efficiently. Experi-
mental results show that our model outper-
forms other models on different datasets in
semantic and syntactic evaluations.

1 Introduction

Word embedding and its related techniques have
shown to be vital for natural language processing
(NLP) (Bengio et al., 2003; Collobert and Weston,
2008; Turney and Pantel, 2010; Collobert et al.,
2011; Weston et al., 2015; Song and Lee, 2017).
The skip-gram (SG) model with negative sam-
pling (Mikolov et al., 2013a,c) is a popular choice
for learning word embeddings and has had large
impact in the community, for its efficient train-
ing and good performance in downstream applica-
tions. Although widely used for multiple tasks, SG
model relies on word co-occurrence within local
context in word prediction but ignores further de-
tailed information such as word orders, positions.

To improve original word embedding mod-
els, there are various studies leveraging external
knowledge to update word embeddings with post
processing (Faruqui et al., 2015; Kiela et al., 2015;
Song et al., 2017) or supervised objectives (Yu and
Dredze, 2014; Nguyen et al., 2016). However,
these approaches are limited by reliable semantic

resources, which are hard to obtain or annotate.
To overcome such limitations, there are many ap-
proaches to further exploiting the characteristics
of the running text, e.g., internal structure of the
context. These approaches include enlarging the
projection layer with consideration of word orders
(Bansal et al., 2014; Ling et al., 2015a), learn-
ing context words with different weights (Ling
et al., 2015b), etc. They are advantageous of
learning word embeddings in an end-to-end unsu-
pervised manner without requiring additional re-
sources. Yet, they are also restricted in their im-
plementation such as that they normally require a
larger hidden layer or additional weights, which
demand higher computation burden and could re-
sult in gradient explosion when embedding dimen-
sions are enlarged. Another issue is that when con-
sidering word orders, they may suffer from data
sparsity problem since n-gram coverage is much
less than word, especially in the cold start scenario
for a new domain where training data is limited.

To address the aforementioned issues, in this
paper, we propose a simple, but effective adap-
tation of the SG model, namely, directional skip-
gram (DSG), with consideration of not only the
word co-occurrence patterns, but also their rel-
ative positions modeled by a special “direction”
vector, which indicates whether the word to be
predicted is on the left or right side of the given
word. Although similarly motivated as the struc-
tured skip-gram (SSG) model (Ling et al., 2015a),
DSG produces word embeddings of higher qual-
ity with lower space and time complexities. Em-
pirical study shows that DSG can be trained ef-
ficiently (as fast as SG, while much faster than
SSG). To test the effectiveness of the embeddings
produced by DSG, we conduct experiments on se-
mantic (word similarity evaluation) and syntactic
(part-of-speech tagging) tasks. The results con-
firm the superiority of DSG to other models.



2 Approach

2.1 Skip-Gram Model

The SG model (Mikolov et al., 2013b) is a popu-
lar choice to learn word embeddings by leveraging
the relations between a word and its neighboring
words. In detail, the SG model is to predict the
context for each given word wt, and maximizes

LSG =
1

|V |

|V |∑
t=1

∑
0<|i|≤c

log f(wt+i, wt) (1)

on a given corpus with vocabulary V , where wt+i

denotes the context words in a window wt+c
t−c, with

c denoting the window size. Herein f(wt+i, wt) =
p(wt+i | wt), and the probability to predict context
word is estimated by

p(wt+i |wt) =
exp(υ′wt+i

>υwt)∑
wt+i∈V exp(υ

′
wt+i

>υwt)
(2)

where υwt is the embedding for wt, and υ and
υ′ refer to input and output embeddings, respec-
tively. The training processing of SG model is
thus to maximize LSG over a corpus iteratively.
For a large vocabulary, word2vec uses hierarchi-
cal softmax or negative sampling (Mikolov et al.,
2013b) to address the computational complexity
that requires |V | × d matrix multiplications.

2.2 Structured Skip-Gram Model

The SSG model (Ling et al., 2015a) is an adap-
tation of SG model with consideration of words’
order. The overall likelihood of SSG model shares
the same form of SG model as Equation 1, how-
ever, with an adapted f(wt+i, wt) where the prob-
ability of predicting wt+i considers not only the
word-word relations but also its relative position
to wt. In practice, each word in wt+c

t−c is not pre-
dicted by a single predictor operating on the output
embeddings υ′wt+i

. Instead, wt+i is predicted by
2c predictors according to where it appears in wt’s
context. As a result, every word in SSG should
have 2c output embeddings for the 2c relative po-
sitions. The probability of predicting wt+i in SSG
is thus formulated as

p(wt+i |wt) =
exp(

∑c
r=−c υ

′
r,wt+i

>υwt)∑
wt+i∈V exp(

∑c
r=−c υ

′
r,wt+i

>υwt)

(3)
where υr,wt+i defines the positional output embed-
dings forwt+i at position r with respect towt. The
embedding of wt is thus updated with word order
information implicitly recorded in υr,wt+i .

Model Parameters Operations
SG 2|V |d 2cC(n+ 1)o

SSG (2c+ 1)|V |d 4c2C(n+ 1)o

SSSG 3|V |d 4cC(n+ 1)o

DSG 3|V |d 2cC(n+ 2)o

Table 1: Complexities of different SG models.
The column of “Parameters” and “Operations” re-
ports space and time complexity, respectively. d:
embedding dimension. C: corpus size. o: unit
operation of predicting and updating one word’s
embedding. n: the number of negative samples.

2.3 Directional Skip-Gram Model

The intuition behind this model is that word se-
quence is an important factor affecting the genera-
tion of our languages; a word should be biased as-
sociated with other words on its left or right side.
For instance, “merry” and “eve” both co-occur fre-
quently with “Christmas” in “merry Christmas”
and “Christmas eve”, respectively. Given the con-
text word “Christmas”, it is useful to identify the
word to be predicted is on the left or right for
learning the embeddings of “merry” and “eve”.1

Motivated by this, we propose a softmax function

g(wt+i, wt) =
exp(δwt+i

>υwt)∑
wt+i∈V exp(δwt+i

>υwt)
(4)

to measure how a context word wt+i is associated
with wt in its left or right context, by introducing
a new vector δ for each wt+i to present its relative
direction to wt. The function g shares an updating
paradigm similar to negative sampling:

υ(new)
wt

= υ(old)wt
− γ(σ(υ>wt

δwt+i)−D)δwt+i

δ(new)
wt+i

= δ(old)wt+i
− γ(σ(υ>wt

δwt+i)−D)υwt

where σ denotes the sigmoid function and γ the
discounting learning rate. Particularly, D is the
target label specifying the relative direction of
wt+i given wt, defined as

D =

{
1 i < 0
0 i > 0

according on the relative position of wt+i respect
to wt. The final model is defined as Equation 1
with f(wt+i, wt) = p(wt+i |wt) + g(wt+i, wt).

1Although SSG can also model this case because “merry”
and “eve” are normally associated with “Christmas” at fixed
positions, the intention of this example is to illustrate that
word sequence can be effectively modeled by distinguishing
left and right context.



Dimension 200
Window size 5
Frequency cut-off 5
Negative samples 5
Starting learning rate 0.025
Iteration 5

Table 2: Model settings for training embeddings.

2.4 Complexity Analysis

To qualitatively analyze the efficiency of our pro-
posed model, we draw Table 1, which compares
the complexity of the aforementioned SG mod-
els. The Parameters column reports parameter
size, which refers to the space complexity. The
Operations column reports the number of opera-
tions in computation, referring to the time com-
plexity. Note that the above complexity analysis is
based on negative sampling. If using hierarchical
softmax, one can replace n+ 1 into h, which rep-
resents the average depth of the hierarchical tree.

Compared to SG model, the SSG model de-
mands obviously higher complexity in terms of
both space and time when context gets larger,
while every word in the DSG model only requires
one extra operation in addition to the original SG
model. Thus, if one enlarges the context, the DSG
model could have similar speed of SG model.

To fairly compare the efficiency of our model
and SSG, we additionally propose a simplified
SSG (SSSG) model that only models left and right
context for a given word. Instead of having 2c
output embeddings in SSG, each word in SSSG
has only two output embeddings representing left
and right context. This is an approximation of our
model within the SSG framework. On the out-
put side, SSSG has two “word” vectors respec-
tively for left and right context, while DSG has
one “word” vector and one “direction” vector. As
a result, the direction vector of DSG can be used to
explicitly predict whether the context is on the left
or right in word prediction, while SSSG doesn’t.

3 Experiments

We use intrinsic and extrinsic evaluations to eval-
uate the effectiveness of different embeddings. To
test and verify our analysis in §2.4, the efficien-
cies of aforementioned SG models are investigated
based on their training speed. The setups for all
experiments are illustrated as follows.

Figure 1: Comparisons of training speed in log-
arithm against different context window size.
KW/Sec refers to thousand words per second.

Dataset. The embeddings were trained on the lat-
est dump of Wikipedia articles2, which contains
approximately 2 billion word tokens.

Comparison. Since the focus of this paper is to
enhance the SG model, we mainly consider the SG
model (Mikolov et al., 2013b), SSG model (Ling
et al., 2015a) and its simplified version SSSG
model, as baselines for comparison.

Settings. Different models share the same hyper-
parameters in training word embeddings, which
are presented in Table 2.

3.1 Training Speed
Figure 1 illustrates the training speed of different
SG models, i.e., SG, SSG, SSSG, and DSG, given
various size of context window.3 Compared to the
original SG model, SSG model shows a relatively
large drop of speed when enlarging the context
window, while there is much less drop observed
for the DSG model. Overall, the curves of four
models roughly comply with the qualitative analy-
sis in Table 1. When starting with only one context
word, the SSG, SSSG, and DSG model share simi-
lar training speed since their time complexities are
not affected by the limited context window size
under this circumstance. When enlarging the con-
text window, the speed gap between the SSG and
SG model is getting larger while the gap between
DSG and SG becomes smaller.4

2https://dumps.wikimedia.org/enwiki/latest/
3The numbers on the curves are obtained when running

on an Intel Xeon CPU E5-2680 v4 with 12 threads.
4Note that the derivations in Table 1 represents the upper

bound of the complexities, where every two words co-occur
in a context window, which hardly happens in real scenarios.
As a result, the observed gaps are slightly smaller from what
are presented in Table 1.



MEN-3k SimLex-999 WS-353
CBOW 70.96 34.32 69.25

CWin 74.28 36.06 72.21
SG 71.90 34.35 70.11

SSG 71.26 31.80 69.46
SSSG 72.07 33.62 70.90
DSG 73.76 36.10 72.60

Table 3: Word similarity results (ρ × 100) from
embeddings trained on the large corpus.

3.2 Word Similarity Evaluation

As a conventional intrinsic evaluation, word sim-
ilarity test is performed on the MEN-3k (Bruni
et al., 2012), SimLex-999 (Hill et al., 2015) and
WordSim-353 (Finkelstein et al., 2002) datasets
for quantitative comparisons among different em-
beddings. The Spearman’s rank correlation (ρ)
(Zar, 1998) is adopted to measure how close the
similarity scores to human judgments on the three
datasets. Besides SG, SSG and SSSG, we also in-
clude CBOW and CWin5 as reference baselines in
this word similarity evaluation.

Table 3 reports word similarity results when the
embeddings are trained on the entire Wiki corpus.
Besides, we created a small corpus by sampling
0.1% Wiki data to simulate the cold-start scenario
that limited data is used to train word embeddings.
The word similarity performance of all models on
this small corpus is reported in Table 4. Overall,
the results of all models are worse when trained
on the small dataset, especially the models tak-
ing structure information of context into account,
such as CWin and SSG. The reason may be largely
due to that modeling order dependence is sensitive
to data sparsity, hence CWin model fails to gener-
ate meaningful representations for low-frequency
words, which are prevalent on small corpus. This
observation indicates that data sparsity problem is
critical in learning word embeddings. Neverthe-
less, DSG yields robust results on different scale
of training data, which suggests that our model
provides an effective solution to learn embeddings
with exploiting the structure in context, while not
severely suffered from the data sparsity problem.
Particularly among all SG models, DSG produces
the best performance when trained on either the
large or the small corpus. This fact further proves

5Continuous window model, the counterpart of SSG pro-
posed in Ling et al. (2015a).

MEN-3k SimLex-999 WS-353
CBOW 58.23 26.67 64.40

CWin 59.68 25.19 62.82
SG 60.19 27.14 65.23

SSG 55.42 24.00 61.95
SSSG 62.70 26.55 66.10
DSG 63.18 27.51 66.71

Table 4: Word similarity results (ρ × 100) from
embeddings trained on the small corpus.

the effectiveness of distinguishing left and right
context for SG embeddings.

3.3 Part-of-Speech Tagging

Besides the intrinsic evaluation to test the em-
beddings semantically, we also evaluate different
embeddings syntactically with an extrinsic evalu-
ation: part-of-speech (POS) tagging. Following
Ling et al. (2015a), this task is performed in both
news and social media data. For news data, we
use Wall Street Journal (WSJ) proportion from the
Penn Treebank (Marcus et al., 1993) and follow
the standard split of 38,219/5,527/5,462 sentences
for training, development, and test, respectively.
The social media data is based on ARK dataset
(Gimpel et al., 2011), which contains manual POS
annotations on English tweets. The standard split
of ARK contains 1,000/327/500 tweets as train-
ing/development/test set, respectively.

POS prediction is conducted by a bidirectional
LSTM-CRF (Huang et al., 2015; Lample et al.,
2016) taking the produced embeddings as input.
LSTM state size is setting to 200. For WSJ, we use
the aforementioned embeddings trained from the
Wiki corpus. For ARK, we prepare a Twitter cor-
pus (TWT) to build embeddings. This data con-
tains 100 million tweets collected through Twitter
streaming API6, followed by preprocessing using
the toolkit described in Owoputi et al. (2013). The
TWT embeddings are trained under the same pro-
cedure as the Wiki embeddings. Similar to word
similarity task, we use CBOW, SG, CWin, SSG
and SSSG as baselines in this task.

Results are reported in Table 5. We observe that
the DSG embeddings can best indicate POS tags
in comparison. It suggests that by exploring word
context in left and right directions, DSG model can
effectively capture syntactic information, which is

6https://developer.twitter.com/en/docs/tweets/filter-
realtime/overview



WSJ ARK
Dev Test Dev Test

CBOW 96.86 97.01 89.36 88.36
CWin 96.98 97.25 90.03 89.94

SG 96.95 97.12 89.26 88.77
SSG 97.08 97.31 90.05 90.15

SSSG 97.01 97.19 89.83 89.78
DSG 97.16 97.37 90.12 90.43

Table 5: POS tagging results (accuracy) on WSJ
and ARK datasets.

useful in predicting POS tags. Although embed-
dings trained on TWT could be affected by the
noisiness and informal nature of tweets, POS tag-
gers with DSG embeddings achieve the best ac-
curacy on ARK data. This observation indicates
that, when learning word embeddings with context
structures on noisy data, DSG has its superiority to
other models such as SSG and SSSG.

4 Conclusions

This paper presents DSG, a simple yet effective
extension to the SG model for learning word em-
beddings. Given an input word, our model jointly
predicts its context words as well as their direc-
tion to the given word. It is analyzed and experi-
mented that our model can be trained as fast as the
original SG model. Experiments on word similar-
ity evaluation and POS tagging demonstrate that
DSG produces better semantic and syntactic rep-
resentations when it is compared with competi-
tive baselines. More importantly, it is also proved
that DSG can effectively predict word similarities
when trained on small dataset and is therefore less
sensitive to data sparsity than existing methods.
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