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Fig. 1. Given an arbitrary talking video and another audio, our method can synthesize a photo-realistic talking video with accurate lip-audio synchronization
with retouched face expressions. Natural face © European Central Bank (CC BY).
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We present VideoReTalking, a new system to edit the faces of a real-world
talking head video according to input audio, producing a high-quality and lip-
syncing output video even with a different emotion. Our system disentangles
this objective into three sequential tasks: (1) face video generation with a
canonical expression; (2) audio-driven lip-sync; and (3) face enhancement
for improving photo-realism. Given a talking-head video, we first modify
the expression of each frame according to the same expression template
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Fig. 2. Our method modifies the original video and generates a lip-syncing
video by an input audio through expression editing and lip-sync networks.
Natural face © ONU Brasil (CC BY).

using the expression editing network, resulting in a video with the canonical
expression. This video, together with the given audio, is then fed into the lip-
sync network to generate a lip-syncing video. Finally, we improve the photo-
realism of the synthesized faces through an identity-aware face enhancement
network and post-processing. We use learning-based approaches for all three
steps and all our modules can be tackled in a sequential pipeline without any
user intervention. Furthermore, our system is a generic approach that does
not need to be retrained to a specific person. Evaluations on two widely-
used datasets and in-the-wild examples demonstrate the superiority of our
framework over other state-of-the-art methods in terms of lip-sync accuracy
and visual quality.
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1 INTRODUCTION
The task of editing a talking head video according to an input speech
audio has important real-world applications, such as translating an
entire video into a different language, or modifying the speech af-
ter video recording. Known as visual dubbing, this task has been
studied in several prior works [Prajwal et al. 2020; Suwajanakorn
et al. 2017; Thies et al. 2020; Wen et al. 2020], which edit the input
talking-head video by modifying the facial animation and emotion
to match the target audio, while leaving all the other motions un-
changed (shown in Figure 1). Some methods [Suwajanakorn et al.
2017; Thies et al. 2020; Wen et al. 2020] can achieve satisfactory re-
sults on a specific speaker, but require training on the talking corpus
of the target speaker to obtain a personalized model, which is not
always available. On the other hand, the current generic methods
produce blurry lower faces [Prajwal et al. 2020] or inaccurate lip
synchronization [Song et al. 2022], which are visually intruding.
These methods also do not support emotion editing, which is often
desirable when changing the speech content.

Inspired by previous inpainting-based talking-head video editing
approaches [Prajwal et al. 2020], we present a new system to edit
the talking lips to match the input audio with more stable lip-sync
results and better visual quality. Previous works consider the origi-
nal frames in the video as the head pose references. However, we
have found that lip generation is very sensitive to these references,
and directly using original frames as basis for lip generation often
produces out-of-sync results. To this end, as shown in Figure 2, we
employ a divide-and-conquer strategy by neutralizing the facial
expressions first, then use the modified frames as pose references
for lip generation, which is more accurate given that all reference
faces now have the same canonical expression. Finally, in contrast to
previous works that often produce low-resolution and blurry results,
we produce photo-realistic results via the proposed identity-aware
enhancement network and the restorations [Wang et al. 2021c; Yang
et al. 2021] based on StyleGAN’s facial prior [Karras et al. 2019].
Specifically, given an arbitrary talking video, we first crop the

face region and extract the pose and expression coefficients of the
3D Morphable Model (3DMM) by a deep neural network [Deng et al.
2019b]. We then use the parameters of the 3DMM with a standard
neutral template expression and re-generate a video through the
semantic-guided expression reenactment network similar to [Ren
et al. 2021]. By doing so, we obtain a video with the same canonical
expression across all the frames, and they will be considered as
the structure references for our lip-sync network. Interestingly, we
can also synthesize talking head videos with different emotions by
changing the expression template. For example, by changing the
lip shape of the expression template to match the “happy" emotion,
this lip shape will be taken into account in the lip-sync network,
causing the talking-head video exhibits the same emotion.

After expression neutralization, a lip-sync network is then applied
to synthesize photo-realistic lower-half faces using the synthesized
expression as the conditional structure information. Specifically, we
design an hourglass-like network with the Fast Fourier Convolution
block [Chi et al. 2020] as the basic learning unit, since it achieves
great success in the general image inpainting task [Suvorov et al.
2021]. As for the audio injection, we use the Adaptive Instance Nor-
malization (AdaIN) block [Huang and Belongie 2017] to modulate
the audio features in global. Similar to [Prajwal et al. 2020], we
use a pre-trained lip-sync discriminator to ensure the audio-visual
synchronicity.

Although previous steps can synthesize talking-head videos with
relatively accurate lip shapes, the visual quality is still limited by the
low-resolution training datasets [Afouras et al. 2018; Nagrani et al.
2017]. To solve this problem, we design an identity-preserving face
enhancement network to produce high-quality outputs by progres-
sive training. The enhancement network is trained on an enhanced
LRS2 dataset [Afouras et al. 2018] enhanced by the face restora-
tion method [Yang et al. 2021]. We also apply the StyleGAN prior
guided face restoration network [Wang et al. 2021c] to remove visual
artifacts around the teeth.

All the above modules can be applied in sequential order without
manual intervention or fine-tuning. We conduct extensive experi-
ments to evaluate our framework on several existing benchmarks as
well as in-the-wild videos. Results show that the proposed system
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Fig. 3. Our framework contains three main components for photo-realistic lip-sync video generation. Natural face © ONU Brasil (CC BY).

can produce videos with much higher visual quality than previous
methods while providing accurate lip synchronization.

2 RELATED WORK
We review the related methods from two aspects, including the
visual dubbing task which aims to edit the input video through
audio, and single image animation using the audio as conditions.

2.1 Audio-based Dubbing in Video Editing
2.1.1 Arbitrary-subject methods. Arbitrary-subject methods aim
at building a general model that does not need to be retrained
for different identities. Speech2Vid [Chung et al. 2017] can re-dub
a source video with a different segment of audio thanks to the
context encoder. Reconstructing the lower-half face by inpainting
is popular recently [KR et al. 2019; Park et al. 2022; Prajwal et al.
2020]. For example, LipGAN [KR et al. 2019] design a neural network
to fill the lower-half face as a pose prior. Wav2Lip [Prajwal et al.
2020] extends LipGAN using a pre-trained SyncNet as the lip-sync
discriminator [Chung and Zisserman 2016] to generate accurate
lip synchronization. Based on Wav2Lip, SyncTalkFace [Park et al.
2022] involve the audio-lip memory to store the lip motion features
implicitly and retrieve them at inference time. Another category of
the methods predicts the intermediate representation first, and then,
synthesizes the photo-realistic results by image-to-image translation
networks, for example, the facial landmarks [Xie et al. 2021] and
the facial landmarks based on 3D face reconstruction [Song et al.
2022]. However, all these methods are struggling to synthesize the
high-quality results with editable emotion.

2.1.2 Personalized methods. Personalized visual dubbing is eas-
ier than the generic one, since these methods are limited to the

certain person in the known environment. For example, Synthe-
sizeObama [Suwajanakorn et al. 2017] can synthesize the mouth
region of Obama by the audio-to-landmark network. Inspired by the
face reenactment methods [Kim et al. 2018; Thies et al. 2019], recent
visual dubbing methods focus on generating the intermediate repre-
sentation from audio, and then, rendering the photo-realistic results
by the image-to-image translation networks. For example, several
works [Thies et al. 2020; Wen et al. 2020; Zhang et al. 2021b] focus
on the expression coefficient from the audio features and render
the photo-realistic results by the image generation networks [Kim
et al. 2018; Thies et al. 2019; Wang et al. 2018]. Facial landmarks [Lu
et al. 2021] and edges [Ji et al. 2021] are also popular choices by pro-
jecting the 3D rendered faces since it contains sparser information.
Furthermore, 3D mesh-based [Lahiri et al. 2021] and NeRF [Milden-
hall et al. 2020]-based methods [Guo et al. 2021] are also powerful.
Although these methods can synthesize the photo-realistic results,
they have relatively limited applications because they need to retrain
the model on the specific person and environment.

2.2 Audio-based Single Image Facial Animation
Different from the visual dubbing, single image face animation aims
to generate the animation by single driven audio, and it has also
been influenced by the video-driven face animation. For example,
[Song et al. 2018] generate the motion from audio using the re-
current neural network, [Zhou et al. 2019] disentangle the input
to subject-related information and speech-related information by
adversarial representation learning. [Vougioukas et al. 2020; Zhou
et al. 2021] consider the audio as the latent code and drive the face
animation by an image generator. The intermediate representation
is also a popular choice in this task. ATVG [Chen et al. 2019] and
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MakeItTalk [Zhou et al. 2020] first generate the facial landmarks
from audio, and then, render the video using a landmark-to-video
network. Dense flow field is another active research direction [Siaro-
hin et al. 2019; Yin et al. 2022]. [Zhang et al. 2021a] predict the 3DMM
coefficients from audio and then transfer these parameters into a
flow-based warping network. [Wang et al. 2021b,a] borrow the idea
from video driven face animation [Siarohin et al. 2019].

3 FRAMEWORK
Technically, our method is a cross-modal video inpainting frame-
work to fill the masked lower-half face under the guidance of the
driven audio and the emotion-modulated reference frame. To this
end, we design a lip-sync network (𝐿-Net in Sec. 3.2), which uses
the masked lower-half face frames, the given audio, and the original
video frames as input to generate a lip-syncing video. However,
there are two major problems if we use the 𝐿-Net only. The first
is the information leak caused by the reference frame, where the
generated lip still relies on the reference heavily. The other is the
low visual quality since current large-scale talking head datasets
are in low resolution.

To this end, except 𝐿-Net, we propose two additional modules as
shown in Figure 3. First, to solve the information leak, we generate a
video with the frozen face expression by a semantic-guided expres-
sion reenactment network (𝐷-Net in Sec. 3.1). The synthesized lips
are the reference lips instead of the original ones. Then, the lower-
half faces of the edited video will be used as a reference structure
for our lip-synthesis network (𝐿-Net). In 𝐿-Net, our method takes
the audio as input and synthesizes the lip-sync results frame-wisely.
Furthermore, we design an 𝐸-Net for the identity-aware face restora-
tion in Sec. 3.3. Finally, we can paste the generated face back to the
original video seamlessly through the post-processing in Sec. 3.4.
Below, we give the details of each component.

3.1 Semantic-guided Reenactment Network
It is challenging to edit the lip-related motion in the video directly.
Previous works often omit the original lip motion changes [Prajwal
et al. 2020] or retiming the background [Song et al. 2022; Suwa-
janakorn et al. 2017] to avoid unnatural movements between the
head pose and lip. Differently, we directly edit the whole lower-half
face, including the facial movements with the help of a face reenact-
ment method. Our key observation is that there is an information
leak [KR et al. 2019; Prajwal et al. 2020] in conditional in-painting
based methods if we use the original frame as the conditional image
for lip synchronization. We give an example to show this phenome-
non in Figure 4. Given the audio and the input frames, if we directly
use the original frames as reference (w/o 𝐷-Net), the generated
lips will be modified according to the original one. Thus, we aim at
editing the expression of the whole lower-half face by the proposed
semantic-guided reenactment network. Then, the frame with stable
expression will serve as the reference for further lip synthesis.

As shown in Figure 3, after the face detection and crop, we extract
the pose and expression coefficients from each frame using monoc-
ular face reconstruction [Deng et al. 2019b]. Then, we obtain the
new driven signal by replacing the original expression coefficient
with the pre-defined expression template. Thus, we can synthesize

/Hi/Silence

w/o D‐Net

Ours

Input
Frames

SilenceAudio

Fig. 4. The proposed D-Net is used to remove the talking-related motions
from the original video. W/o D-Net, the generated lip motion is heavily
influenced by the source video and is still moving even when the audio is
silent, indicating that information leakage affects lip synthesis. Natural face
© European Central Bank (CC BY).

a video with the frozen expression via the produced dense warp
fields of the network and the original frame. Similar to [Ren et al.
2021], the 𝐷-Net contains two encoder-decoder-like structures for
coarse-to-fine training. After the expression editing, we get the sta-
bilized expression across all the frames. Note that, since the quality
of the face reenactment network is still limited, we use the edited
face as the structure reference of our lip-sync network. To this end,
we first detect facial landmarks, smooth them utilizing a temporal
Savitzky–Golay filter, and then use the keypoints of the eye center
and the nose as anchors for face alignment.

Interestingly, we can also utilize this information leak caused by
the lip-sync reference frame through more expression templates (e.g.
smile), resulting in an emotional talking-face video as shown in
Figure 1. Since our expression reenactment network only edits the
lower-half face of the original video, inspired by the facial action
code system [Ekman and Friesen 1978], we can generate the talking
faces in other emotions, i.e., anger and surprise, via the image-based
expression editing network [Pumarola et al. 2018] on the upper face.
We consider it as a plugin and show some results in Sec.5.

3.2 Lip-Sync Network
Our lip-sync network (𝐿-Net) is inspired by a recent conditional
inpainting-based framework [Prajwal et al. 2020], which edits the
original video directly through new audio. Differently, we use the
pre-processed frames from 𝐷-Net as the identity and structure ref-
erence, the audio and the masked original frames as the condition,
to synthesize the lip-syncing video with respect to the input audio.
In Figure 3, we give a brief overview of 𝐿-Net, which contains

two sub-networks, 𝐿𝑎 and 𝐿𝑣 , for audio and video processing, re-
spectively. Here, we give the detailed structure of 𝐿-Net in Figure 5.
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Fig. 5. The detailed structure of the proposed 𝐿-Net. The skip-connections
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For the audio processing, we firstly extract the mel-spectrograms
from the raw audio and use a ResNet-based encoder [He et al. 2016]
to extract the global audio vector 𝐹𝑎𝑢𝑑𝑖𝑜 ∈ R256×1×1 of a time win-
dow. Following previous works, the time window is set to 0.2s per
frame, causing the feature in the dimension of 80×16 to process.
As for the image generation, we first extract the image features
𝐹𝑟𝑒 𝑓 , 𝐹𝑜𝑟𝑖𝑔 ∈ R256×𝐻×𝑊 from the pre-processed referenced images
and the original masked image by two different encoders respec-
tively, then, these features are learned to model the relationship be-
tween pixels automatically via two cross-attention blocks [Vaswani
et al. 2017a]. These cross-attention blocks will calculate the pixel-
wise corresponding matrix of two features and enlarge the reception
fields. After that, we use nine residual Fast Fourier Convolutional
blocks [Chi et al. 2020] to refine the features inspired by recent
general image inpainting framework [Suvorov et al. 2021], and we
inject the audio features by the AdaIN blocks [Huang and Belongie
2017] which normalize visual features channel-wise after each FFC
block. Finally, a series of the convolutional up-sampling layers are
used to generate the final results.

3.3 Identity-aware Enhancement Network
The result from 𝐿-Net is still unperfect since it is hard to train the
model on high-resolution talking-head datasets. On the one hand,
there is no public available large-scale high-resolution talking-head
dataset. On the other hand, if we directly apply the GAN-prior based
face restoration networks [Wang et al. 2021c; Yang et al. 2021] as
the post-processing tools to improve the results, the results might
not be perfect in terms of identity changes [Wang et al. 2021c] and
blurry teeth and face [Yang et al. 2021] as shown in Figure 6.

To this end, we propose an identity-aware enhancement network
inspired by recent image generation networks [Chan et al. 2021;
Karras et al. 2020]. In detail, to acquire the high-resolution talking-
head dataset and aligned domain for up-sampling, we enhance the
low-resolution dataset firstly using a GAN prior-based face restora-
tion network [Yang et al. 2021]. However, there is a domain gap
between the enhanced high-resolution dataset during training and
the blurry output of 𝐷-Net during testing. Then, to avoid this gap,
we produce the low-resolution input of 𝐸-Net by feeding the en-
hanced frame and its corresponding audio to the 𝐿-Net. Ideally,
𝐿-Net should produce the same lip motions as the original frame

Low‐res Result

+ GFPGAN + Ours+ GPEN

Fig. 6. Comparison between different face restoration networks on the
results, including GFPGAN [Wang et al. 2021c], GPEN [Yang et al. 2021],
and our hybrid method. Note that, GFPGAN changes identity a lot. Natural
face © ONU Brasil (CC BY).

using the conditional audio. Thus, we can use the high-resolution
input as supervision directly. As for the architecture, we learn two
style-based blocks [Karras et al. 2020] to up-sample the results four
times and we design a ResBlock-based encoder 𝐸𝑖 -Net to generate
the identity-aware global modulation in each style block.

3.4 Post-processing
We also remove several artifacts when pasting back to the original
video, including the artifacts of teeth generation and the synthesiz-
ing bounding box from the 𝐿-Net. Synthesizing the photo-realistic
teeth for the face video is surprisingly hard [Suwajanakorn et al.
2017]. Unlike previous approach which uses the teeth proxy [Suwa-
janakorn et al. 2017], we seek help from the pre-trained face restora-
tion network [Wang et al. 2021c] for teeth enhancement through
face parsing [Yu et al. 2018]. As for the face bounding box caused
by 𝐿-Net, we segment [Yu et al. 2018] the produced face and paste
back to the original video using the Multi-band Laplacian Pyramids
Blending [Burt and Adelson 1983].

4 TRAINING
Our framework is implemented using Pytorch [Paszke et al. 2019],
and we train each module individually. After training, the whole
framework can be tested in a sequence without manual intervention.
Below, we give the dataset and training details of each module. More
details can be found in supplementary material.

4.1 Training for each module
4.1.1 𝐷-Net. To perform semantic-guided expression reenactment,
we train our network on the VoxCeleb [Nagrani et al. 2017] dataset
with the pose and expression from [Deng et al. 2019b]. This dataset
contains 22496 talking head videos with diverse identities and head
poses. We resize the input frames to 256×256 and train the network
on the cropped faces similar to [Siarohin et al. 2019]. We train
the network in 400k iterations using a progressive training setting.
As for the loss function, we calculate the pixel-wise differences
between the predicted image and the ground truth using perception
loss [Zhang et al. 2018] and gram matrix loss [Gatys et al. 2016].

5



SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Cheng and Cun, et al.
Li
pG

AN
W
av

2L
ip

PC
‐A
VS

O
ur
s

Ed
it
Au

di
o 

In
pu

t

Fig. 7. Qualitative comparison with LipGAN [KR et al. 2019], Wav2Lip [Prajwal et al. 2020], and PC-AVS [Zhou et al. 2021]. Above two rows show the edit
audio and the input video frames, respectively. Note that, to visualize the input audio, we use the audio’s corresponding face to show their mouth shapes.
Natural face © ONU Brasil (CC BY).

Table 1. Quantitative results on LRS2 and HDTF datasets.

LRS2 Dataset HDTF Dataset
Visual Quality Lip-Sync Visual Quality Lip-Sync
FID↓ CPBD↑ LSE-D↓ LSE-C↑ FID↓ CPBD↑ LSE-D↓ LSE-C↑

LipGAN [KR et al. 2019] 5.168 0.2615 9.609 3.062 7.684 0.2754 9.943 4.052
Wav2Lip w/o GAN [Prajwal et al. 2020] 5.069 0.2607 7.116 6.889 7.358 0.2764 8.689 5.427
Wav2Lip [Prajwal et al. 2020] 3.911 0.2714 7.191 6.870 5.632 0.2763 8.895 5.228
PC-AVS [Zhou et al. 2021] 12.800 0.2085 7.666 5.974 - - - -
Ours 5.193 0.2809 6.519 7.089 4.504 0.2903 9.359 4.518

4.1.2 𝐿-Net. We train the 𝐿-Net on the LRS2 [Afouras et al. 2018]
dataset. This lip-reading dataset contains large-scale 160p videos
from BBC programs. We pre-process the dataset using face detec-
tion [Bulat and Tzimiropoulos 2017] and resize the input image to
96 × 96 following the previous method [Prajwal et al. 2020]. We
train the 𝐿-Net using perceptual loss and lip-sync discriminator for
visual quality and audio-visual synchronization [Prajwal et al. 2020],
respectively.

4.1.3 𝐸-Net. The training process of 𝐸-Net is based on 𝐿-Net. We
enhance the LRS2 dataset in advance to get a high-resolution dataset,
and train the 𝐸-Net in 300k iterations. As for the loss function, 𝐸-
Net is trained on the hybrid losses of perceptual loss [Johnson et al.

2016], pixel-wise 𝐿1 loss, adversarial loss [Isola et al. 2017], lip-
sync discriminator [Prajwal et al. 2020] and identity-loss using a
pre-trained face recognition network [Deng et al. 2019a].

4.2 Evaluation
We evaluate the proposed method in terms of visual quality and
lip-synchronization. As for the visual quality, since the ground-truth
talking video is unavailable, we choose Fréchet inception distance
(FID) [Heusel et al. 2017] and cumulative probability blur detection
(CPBD) [Narvekar and Karam 2009] to evaluate the visual quality
of generated videos. A lower FID score means that the generated
images are closer to the dataset distribution. The CPBD reflects the
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sharpness of the results. Different from [Prajwal et al. 2020], we
compute visual quality metrics on the full frames of the video instead
of cropped faces since we focus on the quality of the whole video.
We choose the LSE-C and LSE-D [Prajwal et al. 2020] to evaluate
the quality of lip synchronization. As for the dataset choices, we
evaluate our framework on both low-resolution dataset (LRS2) and
high-resolution dataset (HDTF). HDTF dataset contains 720p or
1080p videos from YouTube. Following the unpaired evaluating
settings as described in [Prajwal et al. 2020], we take a video and an
audio clip from the other different video to synthesize the results.
We create 14𝑘 and 100 twenty-second audio-video pairs for LRS2
and HDTF dataset evaluation respectively.

5 RESULTS

5.1 Comparison with state-of-the-art Methods
We compare our method with three state-of-the-art methods under
the same settings, including LipGAN [KR et al. 2019], Wav2Lip [Pra-
jwal et al. 2020] and PC-AVS [Zhou et al. 2021]. LipGAN andWav2Lip
share the similar network structures. Differently, Wav2Lip uses a
pre-trained lip-sync discriminator as the lip-expert, yet a better
lip-sync performance. PC-AVS is originally proposed for one-shot
pose-controllable talking-head generation. We use the identity code
of each original video frame to replace the original single image face
animation settings. We compare the proposed method with these
methods using their open-sourced codes.

As shown in Table 1, the proposed method achieves much better
visual qualities according to CPBD and FID. Since the LRS2 dataset
is low-resolution and our method produces high-resolution results,
the FID of Wav2Lip on the LRS2 dataset is better. As for the accu-
racy of lip-sync, our method still gets much better and comparable
performance on these two datasets. We also show some examples
in Figure 7 to perform the visual comparison. From this figure, our
method produces high-quality results with more accurate lip-sync
than previous methods. Since visual dubbing is a video editing task,
we highly recommend the reader to compare our methods with
others refer to the accompanying video.
For the comparison of the lip-sync quality, human evaluation is

required. We perform a user study to further evaluate the perfor-
mance of the proposed method. In the user study, we generate ten
talking videos with different audio and video sources of our method
and two state-of-the-art methods (LipGAN and Wav2Lip) on the
HDTF dataset. We let the users show their opinions about each video
in terms of the visual and lip-sync qualities. We set five different
scores (larger is better, ranging from 1 to 5) for each option. Our
form is sent to 51 people in total, getting 510 opinions. As shown in
Table 2, most users prefer to give higher scores to our method with
respect to the visual and lip-sync quality.

Table 2. User Study.

Method Visual Quality↑ Lip-Sync Quality↑
LipGAN 2.867 3.058
Wav2Lip 3.173 3.398
Ours 4.171 4.100

Natural + Angry Natural + Surprise Smile + Surprise

Fig. 8. More emotional results using [Pumarola et al. 2018]. Natural face
© ONU Brasil (CC BY).

5.2 Ablation Study
We mainly ablate three major components of our framework in
Table 3. The first component is the cross-attention between two
image encoders. 𝐿-Net w/o cross-attention in Table 3 means channel-
wisely concatenating the features from the source and reference
frames. We find cross-attention is helpful in terms of the lip-sync
quality since it can capture the long-range dependencies. Besides
the gains in numerical metrics, we also find it brings more vivid
results (e.g, larger mouth). We then show the results of adding the
𝐸-Net in our framework. As we expected, the identity-aware face
enhancement will hugely improve the visual quality. However, the
additional artifacts will also influence the lip-sync quality. Finally, by
using 𝐷-Net to stabilize reference frames, our framework generates
better video in terms of visual and lip-sync quality.

Table 3. Major Ablation Studies on HDTF Dataset.

Visual Quality Lip-Sync Quality
FID↓ CPBD↑ LSE-D↓ LSE-C↑

𝐿-Net w/o cross-att. 5.951 0.2743 9.788 4.164
𝐿-Net 6.471 0.2755 9.578 4.382
𝐿-Net + 𝐸-Net 3.334 0.2873 10.171 3.764
𝐿-Net + 𝐸-Net + 𝐷-Net 4.504 0.2903 9.359 4.518

5.3 Extensions to Emotional Talking Video
We have already shown that the proposed method can be used
for emotional talking-head video editing in Figure 1. Since our
method only modifies the lower-half face, we also get inspiration
from the facial action unit system [Ekman and Friesen 1978] and edit
the upper face of the images using [Pumarola et al. 2018], causing
different combinations as shown in Figure 8.

5.4 Limitation
Although the proposed method can work for the videos in the wild,
it still contains some noticeable artifacts in some cases. As shown
in Figure 9, one noticeable difference of the proposed framework
will cause a slightly identity change from the original video due
to the dense warping of 𝐷-Net. However, it is only one module
of our method and we will replace it with another face reenact-
ment network [Wang et al. 2021d] or 3D-based face reenactment
method [Kim et al. 2018] directly. Our method also shows some
artifacts in some extreme poses as shown in Figure 9. Since our
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Input Identity Modification Extreme Pose

Fig. 9. Failed cases on identity and extreme poses. Natural faces © ONU
Brasil and © European Central Bank (CC BY).

method edits the video in a frame-by-frame fashion, the results may
show some small temporal jittering and flashing.

6 CONCLUSION
We present a generic system for audio-based talking-head video
editing by removing the lip motion first and then performing editing.
As demonstrated, our framework can work on in-the-wild videos
without fine-tuning and produce high-quality results using the au-
dio as the condition. Besides, our system has the potential on the
emotional talking-head generation for the lower-half face of the
video. We will explore in the future to support more emotions and
connect the source audio and contexts to the emotions.
Ethical Considerations. Since our system can edit the talking

content of the video in the wild, we also consider the misuse of
the proposed method. We will add both robust video and audio
watermark to the produced video, and develop the tools to identify
the trustworthiness. On the other hand, we hope our method can
also help the research in the DeepFake detection.
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A STUDY ON DIFFERENT EXPRESSION TEMPLATES
We use a hand-crafted neutral expression template for all the ex-
periments in our main paper. Here, we provide a study on how
different expression templates influence the performance of 𝐷-Net.
To achieve this goal, we interpolate the expression templates be-
tween the neutral and smile expression coefficients and evaluate
the results on 10 videos from HDTF [Zhang et al. 2021a] dataset.
In Table 4, the lip-sync metrics show minor changes when we edit
the expression templates, indicating that 𝐷-Net is robust to the
expression template.

Table 4. Lip-Sync metrics on 10 videos from HDTF dataset using different
expression templates.

Interpolation Ratio
from Neutral to Smile Expression LSE-D ↓ LSE-C ↑

0 (Neutral Template) 9.027 4.829
0.2 9.058 4.798
0.4 9.092 4.768
0.6 9.084 4.781
0.8 9.025 4.834
1 (Smile Template) 8.924 4.929

B ANALYSIS OF THE TRADE-OFF BETWEEN IDENTITY
PRESERVATION AND EXPRESSION ANIMATION

Our method utilizes the information leaks between models for ex-
pression editing. Interestingly, we find there is a trade-off between
the identity preservation and expression editing when using 𝐷-Net.
In detail, the expression normalization can be done in both one-shot
face reenactment and video to video settings for better expression
animation and identity preservation, respectively. In one-shot set-
ting, the reenacted video is reconstructed by warping the first frame
of the whole video using the original pose coefficients and template
expression coefficients. In this setting, 𝐷-Net can generate more
stable lip animation, yet a better lip-sync performance. However,
since 𝐷-Net uses the dense flow for warping, there is a little identity
modification. In video-to-video setting, we do not fix the reference
frame to be warped, allowing 𝐷-Net to change the expression of
each frame, which helps identity preservation but cause a little un-
stable on lip movement. We choose this setting as the default choice
in our method.

C IMPLEMENTATION DETAILS

C.1 Implementation Details of D-Net
C.1.1 Model Architecture. The architecture design of 𝐷-Net is sim-
ilar to PIRenderer [Ren et al. 2021], which consists of three sub-
networks for coefficient mapping, feature warping and refinement.
The driven 3DMM coefficients will be translated to the latent codes
𝑧 through the mapping network and then injected into the feature
warping and refinement networks. In detail, the mapping network
contains four 1D convolution layers and applies the Leaky-ReLU as
activation function to calculate the global feature. The architecture
of the warping network and editing network is an encoder-decode-
based network with skip connections. The warping network does

downsampling five times and upsampling three times, and then
generates flow fields that are a quarter of the original size. The edit-
ing network contains three stages to learn multi-scale features. We
use the CONV-SpertralNorm-LeakyReLU block as the up-sampling
and down-sampling layers. The AdaIN [Huang and Belongie 2017]
blocks are applied after each convolution layer to inject the motion
information.

C.1.2 Loss Functions. For the warping network, we calculate the
perceptual loss [Johnson et al. 2016] between the warped image 𝐼𝐷𝑤

and ground truth:

L𝐷𝑤
= L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =

∑︁
𝑙

| | 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝑔𝑡 ) − 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝐷𝑤
) | |2, (1)

where 𝑓𝑣𝑔𝑔 is the pre-trained 𝑉𝐺𝐺-19 network [Simonyan and Zis-
serman 2014] and 𝑙 is the layer of the feature map.
For the editing network, we calculate the perceptual loss and

gram matrix style loss [Gatys et al. 2016] between the generated
image 𝐼𝐷 of the whole 𝐷-Net and ground truth:

L𝑐 =
∑︁
𝑙

| | 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝑔𝑡 ) − 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝐷 ) | |2, (2)

L𝑠 =
∑︁
𝑙

| | 𝐺 (𝑓 𝑙𝑣𝑔𝑔 (𝐼𝑔𝑡 )) −𝐺 (𝑓 𝑙𝑣𝑔𝑔 (𝐼𝐷 )) | |2, (3)

where G is the gram matrix constructed from activation map. The
full optimization objective of editing network is:

L𝐷𝑒
= _𝑐L𝑐 + _𝑠L𝑠 , (4)

where _𝑐 = 1 and _𝑠 = 250.

C.1.3 Training and Inference Details. We train 𝐷-Net on the Vox-
Celeb [Nagrani et al. 2017] dataset. We first pre-train the map-
ping network and the warping network for 200k iterations, and
then train the whole network for another 200k iterations. We use
Adam [Kingma and Ba 2014] optimizer and the learning rate is 1𝑒−4.
During the training phase, the network is doing a self-reconstruction
task. We randomly choose two frames from the original video as the
source and target image pairs, and we reconstruct the target frame
using the source image and coefficients of the target frame. During
the testing phase, we use the pose coefficients of the source image
and expression coefficients of pre-defined template to normalize the
lip shape while maintaining the original pose of the video.

C.2 Implementation Details of L-Net
C.2.1 Model Architecture. The 𝐿-Net consists of an audio encoder
network 𝐿𝑎-Net and a visual encoder-decoder-based network 𝐿𝑣-
Net, as shown in Figure 10. The audio encoder 𝐿𝑎-Net, which con-
sists of several ResBlock-based down-sampling layers, are used to
extract the high-level audio features. The encoder of 𝐿𝑣-Net is made
up of three down-sampling layers which consist of 2D convolution,
batch normalization and Leaky-ReLU activation function. Applying
two separate encoder networks, the half-masked original frame 𝐼𝑜𝑟𝑖𝑔

𝐿𝑅

and randomly selected reference frame 𝐼𝑟𝑒 𝑓
𝐿𝑅

from the same video are
encoded to features 𝐹𝑜𝑟𝑖𝑔 and 𝐹𝑟𝑒 𝑓 , respectively, and then, these fea-
tures are fused to 𝐹𝑣 using two cross-attention blocks [Vaswani et al.
2017b] for long-range dependencies and avoid the local information
leak. For the cross-attention block, we use 𝐹𝑜𝑟𝑖𝑔 to generate query𝑄
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Fig. 10. The architecture of the 𝐿-Net.
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Fig. 11. The components used in the 𝐿-Net. (a)ResBlock, (b)DownSampleBlock, (c)UpSampleBlock, and (d)LaMa-AdaIN Block.

and key 𝐾 , and then use 𝐹𝑟𝑒 𝑓 to generate value 𝑉 . We calculate the
attention score between 𝑄 and 𝐾 and the weighted sum of 𝑉 to ob-
tain the 𝐹𝑣 . The decoder of 𝐿𝑣-Net is made up of three up-sampling
layers, each of which consist of a convolution-up block, nine Mod-
ulated Res-FFC (MR-FFC) blocks and skip connection from visual

encoder. More details about the Fast Fourier Convolution (FFC) can
be found in [Chi et al. 2020]. All the blocks used in 𝐿-Net are shown
in Figure 11.
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Fig. 12. The architecture of the 𝐸-Net.

C.2.2 Loss Functions. For the visual quality, we calculate the pixel-
wise 𝐿1 loss in RGB space and perceptual loss in feature space
between the generated results 𝑂𝐿𝑅 of 𝐿-Net and low-resolution
ground truth 𝐼𝑔𝑡 :

L1 = | |𝐼𝑔𝑡 −𝑂𝐿𝑅 | |1, (5)

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =
∑︁
𝑙

| | 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝑔𝑡 ) − 𝑓 𝑙𝑣𝑔𝑔 (𝑂𝐿𝑅) | |2 . (6)

For the audio-visual synchronization, we use pre-trained Sync-
Net [Chung and Zisserman 2016; Prajwal et al. 2020] as lip-sync
discriminator to calculate sync loss between continuous five frames:

L𝑠𝑦𝑛𝑐 =
1
𝑁

𝑁∑︁
𝑖=1

− log(𝑃𝑠𝑦𝑛𝑐 ), (7)

𝑃𝑠𝑦𝑛𝑐 =
𝑣 · 𝑎

max | |𝑣 | |2 · | |𝑎 | |2
, (8)

where 𝑃𝑠𝑦𝑛𝑐 indicates the probability that the input audio-video
pair is in sync. 𝑣 and 𝑎 are video and audio embeddings extracted
from pre-trained SyncNet. The full optimization objective of 𝐿-Net
is:

L𝐿 = _1L1 + _𝑝L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + _𝑠𝑦𝑛𝑐L𝑠𝑦𝑛𝑐 , (9)

where _1 = 1, _𝑝 = 1 and _𝑠𝑦𝑛𝑐 = 0.3.

C.2.3 Training and Inference details. We train and inference the 𝐿-
Net following the pipeline of Wav2Lip [Prajwal et al. 2020]. During
the training phase, the input frames 𝐼𝐿𝑅 ∈ R5×6×96×96 are made up
by five continuous frames with five randomly selected reference
from the same video. We also send the corresponding audio window

to the network for driving information. The audio features are mel-
specrograms conducted from 16kHz audio with FFT window size
800 and hop size 200. We train 𝐿-Net in 400k iterations on the LRS2
dataset using Adam optimizer. The learning rate of 𝐿-Net is 1𝑒−4.
During the testing phase, we use the whole input frames as the
reference frame to preserve the pose and background information.

C.3 Implementation Details of E-Net
As discussed in the main paper, E-Net is used to upsample the
generated videos by the enhanced LRS2 dataset. Below, we give the
details of the implementation and training details.

C.3.1 Model Architecture. Figure 12 shows the architecture of 𝐸-
Net, which contains an identity encoder𝐸𝑖 -Net and a super-resolution
module 𝐸𝑢 -Net. In 𝐸𝑢 -Net, similar to 𝐿-Net, we feed the continu-
ous five frames of the video frames 𝐼𝐻𝑅 (concatenation of masked
the lower-half face and itself) and the randomly picked references
𝐼
𝑟𝑒 𝑓

𝐻𝑅
from the same video to the 𝐸𝑖 -Net. Then, these images will

be down-sampled with some augmentations (including the differ-
ential JPEG compression and bi-linear down-sampling) and send
to the pre-trained 𝐿-Net for lip synchronization. After that, we get
edited frames by the audio to further up-sampling. Inspired by Style-
GAN [Karras et al. 2020], the super-resolution module 𝐸𝑢 -Net uses
the similar blocks to upsample the low-resolution results. Each style-
based layer is built by a StyleConv block and a tRGB block to learn
the high-resolution results. More details about the StyleConv and
tRGB blocks can be found in [Karras et al. 2020]. In each StyleConv,
we also use the features from the identity encoder 𝐸𝑖 -Net as the
modulation for identity preservation. 𝐸𝑖 -Net is a res-block [He et al.
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Fig. 13. The architecture of ResBlockDown used in 𝐸𝑖 -Net.

2016] based encoder which consists of six down-sampling layers
and a linear layer. We first resize the high-resolution randomly se-
lected reference frames 𝐼𝑟𝑒 𝑓

𝐻𝑅
from 384 × 384 to 256 × 256. Then, the

down-sampling layers will be used to extract the high-level feature
of the 𝐼𝑟𝑒 𝑓

𝐻𝑅
to a 512-dimension vector. The detailed architecture of

the ResBlock-based down-sampling layer is shown in Figure 13.

C.3.2 Loss functions. We calculate the pixel-wise 𝐿1 loss in RGB
space and perceptual loss in feature space between the generated
results 𝑂𝐻𝑅 of 𝐸-Net and high-resolution ground truth 𝐼𝐺𝑇 :

L1 = | |𝐼𝐺𝑇 −𝑂𝐻𝑅 | |1, (10)

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =
∑︁
𝑙

| | 𝑓 𝑙𝑣𝑔𝑔 (𝐼𝐺𝑇 ) − 𝑓 𝑙𝑣𝑔𝑔 (𝑂𝐻𝑅) | |2 . (11)

For better identity preservation, we apply the identity loss. Spe-
cially, we adopt the pre-trained face recognition networkArcFace [Deng
et al. 2019a] and calculate this loss in feature space similar to per-
ceptual loss:

L𝑖𝑑 = | | 𝑓𝑎𝑟𝑐 𝑓 𝑎𝑐𝑒 (𝐼𝐺𝑇 ) − 𝑓𝑎𝑟𝑐 𝑓 𝑎𝑐𝑒 (𝑂𝐻𝑅) | |2 . (12)

To increase the realistic of the generated sample, we also use the
adversarial loss:

L𝑎𝑑𝑣 (𝐺𝐸 , 𝐷) = E𝐼𝐺𝑇
[log𝐷 (𝑂𝐻𝑅)] +E𝑂𝐻𝑅

[log(1−𝐷 (𝐺𝐸 (𝑂𝐻𝑅)))] .
(13)

Finally, the full optimization objective of 𝐸-Net is:

(𝐺∗
𝐸 , 𝐷

∗) = arg min
𝐺𝐸

max
𝐷

_1𝐿1 + _𝑝L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

+ _𝑎𝑑𝑣L𝑎𝑑𝑣 + _𝑖𝑑L𝑖𝑑 ,
(14)

where _1 = 0.2, _𝑝 = 1, _𝑎𝑑𝑣=100 and _𝑖𝑑 = 0.4.

C.3.3 Training details. To train the 𝐸-Net, we first perform the face
restoration network GPEN [Yang et al. 2021] to the LRS2 dataset to
obtain the high-resolution training dataset. Then, we use a hybrid
data argumentation method of differentiable JPEG and bi-linear
down-sampling to get the low-resolution (96 × 96) input 𝐼𝐿𝑅 of
𝐿-Net. Notice that, we do not use the original image as the low-
resolution sample since there is still a domain gap to avoid the
temporal jitting. Driving by the driven audio, we can get the low-
resolution lip-synced result for 𝐸-Net. Ideally, 𝐿-Net should produce
the same lip motions as the original high-resolution input and we
use it as the supervision for upsampling. This network is trained
in 300k iterations. We use Adam optimizer and the learning rate is
1𝑒−5. 13
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