
Pattern Recognition 126 (2022) 108581 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Structure-aware conditional variational auto-encoder for constrained 

molecule optimization 

Junchi Yu 

a , b , c , Tingyang Xu 

c , Yu Rong 

c , Junzhou Huang 

c , Ran He 

a , b , d , ∗

a University of Chinese Academy of Sciences, China 
b Institute of Automation, Chinese Academy of Sciences, China 
c Tencent AI Lab, China 
d Center for Excellence in Brain Science and Intelligence Technology, CAS, China 

a r t i c l e i n f o 

Article history: 

Received 10 January 2021 

Revised 28 December 2021 

Accepted 7 February 2022 

Available online 9 February 2022 

2010 MSC: 

00-01 

99-00 

Keywords: 

Molecule optimization 

Conditional generation 

Drug discovery 

a b s t r a c t 

The goal of molecule optimization is to optimize molecular properties by modifying molecule structures. 

Conditional generative models provide a promising way to transfer the input molecules to the ones with 

better property. However, molecular properties are highly sensitive to small changes in molecular struc- 

tures. This leads to an interesting thought that we can improve the property of molecules with lim- 

ited modification in structure. In this paper, we propose a structure-aware conditional Variational Auto- 

Encoder, namely SCVAE, which exploits the topology of molecules as structure condition and optimizes 

the molecular properties with constrained structural modification. SCVAE leverages graph alignment of 

two-level molecule structures in an unsupervised manner to bind the structure conditions between 

two molecules. Then, this structure condition facilitates the molecule optimization with limited struc- 

tural modification, namely, constrained molecule optimization, under a novel variational auto-encoder 

framework. Extensive experimental evaluations demonstrate that structure-aware CVAE generates new 

molecules with high similarity to the original ones and better molecular properties. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Molecule optimization is one fundamental problem in bio- 

hemistry since it helps to generate molecular structures with spe- 

ific desired properties [1,2] . However, it still remains challeng- 

ng because the space of possible molecules is vast and search- 

ng in such space is burdensome owing to its combinatorial nature 

3] . Especially, molecular properties are highly sensitive to small 

hanges in molecular structures [4] . For example, one could in- 

rease the solubility of ethyl-benzene by simply changing the hy- 

rogen on the methyl to a hydroxyl. Such property sensitivities 

f molecules actually attract chemists’ interests because a small 

hange in a molecule indicates small changes in the synthetic 

aths. This leads to constrained molecule optimization shown in 

ig. 1 , which requires limited structural modifications but signifi- 

ant improvements on molecular properties. 

Nowadays, it becomes natural to apply deep learning on 

olecule optimization due to its successes in many other fields. 

rior deep learning works mainly focus on multi-step solutions. 
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raditional VAE based methods resort to representation learning 

ith well-designed variational auto-encoder (VAE) architecture to 

pproach the potential molecular space [5–7] . Then, these meth- 

ds do multi-step gradient ascent with respect to the certain prop- 

rty in the latent space to search the better molecules. Some rein- 

orcement learning (RL) based methods adjust the hidden molecu- 

ar space by treating molecular properties as rewards [8] . Beyond 

hat, Jin et al. [9] views molecule optimization as paired graph- 

o-graph translation to avoid the time and computational cost in 

ulti-step solutions. It learns molecule optimization as an one- 

tep projection from a pair of molecules with significantly im- 

roved property and similar structure in the pair. Another way to 

odel molecule optimization is to isolate the property and struc- 

ure in the latent space [10] via disentanglement. Recent literature 

ocuses on the subgraph-based methods which combine different 

otifs for the synthesized molecules. Despite fruitful results ob- 

ained by those deep learning methods, few methods focus on con- 

trained molecule optimizations. The challenge still remains how 

o model property sensitivities with structural constraints. In other 

ords, can we leverage the structural similarities as a condition to 

acilitate the constrained molecule optimization? 

Recalling methods in deep graph learning, graph alignment has 

eceived increasing attention to capture correlated structural sim- 

https://doi.org/10.1016/j.patcog.2022.108581
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108581&domain=pdf
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Fig. 1. An instance for constrained molecule optimization. Only limited changes in 

structure are allowed to improve the drug likeness (QED) of a molecule. The similar- 

ity is computed via Tanimoto Similarity over Morgan Fingerprints of two molecules. 
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larities among graphs. The goal of graph alignment is to identify 

imilar nodes across multiple graphs [11,12] . However, it is non- 

rivial to model the similarity of molecules with the graph align- 

ent. First of all, it is laborious and time-consuming of manu- 

lly identifying anchor points or anchor edges in molecule pairs 

or alignment. Besides, the one-to-one mapping setting of current 

raph alignment methods hinders its implementation to align the 

imilar nodes and substructures in the molecule graphs as differ- 

nt molecules have different numbers and types of nodes (atoms). 

ost importantly, the substructures in molecules are vital to the 

olecule property while the graph alignment only seek for corre- 

pondence at node level. 

To this end, we propose structure-aware Conditional Variational 

uto-Encoder (SCVAE) for constrained molecule optimization. SC- 

AE reconstructs one of a pair of two similar molecules by taking 

he other one in the pair as a structural condition . We first em- 

loy two-level soft graph alignment to exploit structural similarity 

f molecule pairs. Specifically, we decompose a molecule into small 

otifs and view it as a tree to model structure similarity at a low- 

esolution. Then, at graph level, we examine the atom correspon- 

ence for structural similarity at a high-resolution. This strategy 

llows us to effectively model the similarity of molecules at dif- 

erent level. Furthermore, we view the structural similarity as an 

xtra component in the evidence lower bound to train the whole 

ramework. In the training phase, SCVAE treats the one with poorer 

olecular property in the pair as structure condition and recon- 

tructs the one with better molecular property in the pair so that 

e can obtain new molecules with better property by feeding an- 

ther molecule as a condition in the generation phase. We evaluate 

ur model on five constrained molecule optimization tasks on ZINC 

nd QM9 dataset. Experiment results demonstrate that our model 

an exploit structural information in paired molecules to achieve 

uperior optimizing results. 

. Related work 

.1. Molecule generation and optimization 

Molecules are usually represented as SMILES strings and graphs. 

o ensure the chemical validity of the generated molecules, the for- 

er [5,6] mainly resort to syntactic and semantic constraints in 

he decoding process. However, those methods cannot fully main- 

ain chemical valence and thus result in invalid molecules. To this 

nd, Jin et al. [7 , 9] view molecules as a combination of cliques

nd achieve 100% valid molecules by masking the cliques that 

ead to invalid results. You et al. [8] further incorporates molecule- 

einforcement rules and domain-specific rewards. Later, given a 

tarting molecule, Seff et al. [13] explores new ones by locally op- 

rating reversible inductive moves. 

Although there has been a great breakthrough in molecule 

eneration, molecule optimization remains challenging. Madhawa 

t al. [1] , Kusner et al. [5] , Dai et al. [6] , Jin et al. [7] resort to
2 
ayesian Optimization and do gradient ascent w.r.t target property 

n the latent space. Shi et al. [2] , You et al. [8] start from a sin-

le atom or subgraph and constantly connect with new parts that 

ave the most RL rewards until it reaches the maximum length. 

uilt upon JT-VAE, VJTNN [9] introduces a one-step manner for 

onstrained molecule optimization by selecting paired molecules 

ith similar structure and distinct improvement in properties. 

rained with paired data, VJTNN learns a mapping from degener- 

ted molecules to the better ones by modeling the difference be- 

ween their latent representations. However, it doesn’t model the 

tructure similarity between the input pairs, which is essential to 

onstrained molecule optimization. Motivated by the observation 

hat the molecule properties are highly influenced by small mo- 

ifs [14,15] , several works decompose the molecules into small sub- 

tructures and ensembles the motifs that leads to molecules with 

etter properties [3,16] . Yang et al. [17] performs the molecule op- 

imization by simultaneously augmenting the datasets and training 

he model via the stochastic expectation maximization method. 

.2. Graph alignment 

The purpose of graph alignment is to match the nodes across 

ifferent graphs. To do that, most works rely on a set of predefined 

nchor nodes as the queries and search for the candidates which 

est matches the queries [18] . For example, Yasar and Çatalyürek 

12] leverages anchor points to locate nodes in a certain graph 

nd compares the position of nodes across different graphs by a 

ivide-and-conquer strategy. Derr et al. [19] aligns node embed- 

ing both on node and graph level with the advantage of adver- 

arial learning. Besides, other works factorize the similarity ma- 

rix of the nodes to avoid constructing pair-wise feature compar- 

son [11] . Furthermore, the graph alignment is extended to a more 

eneral scenario that involves multiple graphs using intra- and 

nter- structural embedding [20] . The node correspondence discov- 

red by the graph alignment methods naturally hints the struc- 

ural similarity between the pairs of graphs, and thus facilitates 

arious tasks. Sun et al. [21] employs the graph alignment to mit- 

gate the non-isomorphic neighborhood structures in knowledge 

raphs and yields consistent representations for them. Weskamp 

t al. [22] uses the graph alignment to identity the common fea- 

ures in different proteins to study the functional relationship from 

heir structures. Berg and Lässig [23] develops a searching algo- 

ithm to mine the frequent motifs in the interaction network base 

n graph alignment. Bai et al. [24] enhances the predictive per- 

ormance of the graph neural networks by aligning the topological 

tructures of the graphs. However, it is nontrivial to employ graph 

lignment to model the structural similarity across molecules and 

mprove the constraint molecule optimization. The major challenge 

s that the anchor nodes in molecule graphs are under-defined. 

.3. Conditional generative model 

Given samples x with corresponding attributes y , the condi- 

ional generative model aims to learn a conditional distribution 

p(x | y ) and generate data by feeding y to the model. Recent works

ainly improve the adversarial generative network (GAN) [25] and 

ariational auto-encoder (VAE) [26] by modeling a distribution of 

idden space conditioned on the input observation. Two popular 

odels, namely Conditional-GAN [27] and Conditional-VAE [28] , 

ave been applied into many fields such as image generation [29–

2] , text generation [33] and neural language processing [34,35] . 

hese methods usually embed images or text into latent vectors 

o constrain the hidden space. Besides, other works resort to dis- 

ntangle the latent representations regarding the attributes in the 

idden space Li et al. [36] . Then, the conditional generation is 

chieved by concatenation of desired latent representations and 
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utput the real world data by a decoder. Chen et al. [37] extends 

AN with a mutual information cost and thus successfully con- 

rols the properties of images by modifying the latent vectors. Hig- 

ins et al. [38] learns factorised latent vector in an unsupervised 

anner via augmenting the Kullback–Leibler divergence penalty 

f the VAE objective. Although the conditional generation models 

ave greatly facilitated various tasks in many aspects, it remains a 

hallenge to model the structural condition between the molecule 

raphs and restrict the structural similarity across the input and 

utput molecules, mostly due to the irregular and discrete nature 

f molecules. Thus, it is imperative to effectively model the simi- 

arity of molecules to boost the constrained molecule optimization. 

. Notations 

Viewing molecules as graphs, we denote a molecule graph as 

 = { V, E} , where V and E are nodes and edges. Similar to Jin et al.

7] , we extract a junction tree from the molecule graph and denote 

t as T = (V, E) . 

Let f i be the feature of node i . f i represents atom type, va-

ence of an atom or type of a subgraph when i represents a graph

ode or a tree node. We denote the node embedding of molecule 

 at tree and graph level as x T and x G respectively. x T and x G 

re n T × L and n G × L matrices, where n T and n G are the number

f nodes at tree and graph level and L is the dimension of node 

mbedding. We adopt Tanimoto Similarity over Morgan Molecule 

ingerprints as the similarity metric between molecule x and y , 

enoted as sim (x, y ) . For constrained molecule optimization, sim- 

lar to Jin et al. [9] , we first sample such molecule pairs to sat-

sfy (X, Y ) = { (x, y ) | p(y ) − p(x ) ≥ 0 , sim (x, y ) ≥ δ, x ∈ ( M) , y ∈ ( M) } ,
here p(·) denotes the property value of a molecule and ( M) de- 

otes a set of molecules. We denote [ ·, . . . , ·] as the operator of

oncatenation for vectors. 

. Method 

In this section, we start with the preliminaries related to the 

roposed method. Then we elaborate the details of our method. 

.1. Preliminaries 

Conditional generative methods The constrained molecule opti- 

ization is closely related to the conditional generative methods. 

iven molecule pairs (X, Y ) , these methods aim to learn the con- 

itional distribution p(Y | X ) . Usually it is intractable to directly 

ompute this distribution. Following the framework of conditional 

ariational auto-encoder, VJTNN [9] optimizes a variational lower 

ound, which takes the form: 

og p(Y | X ) ≥ E z∼q (z| x ) log p(y | z, x ) − KL (q (z| x ) | p(z)) = L ELBO (1) 

here KL (·) is the Kullback–Leibler divergence. This objective in- 

roduces a variational encoder q (z| x ) and a probabilistic decoder 

p(y | z, x ) for molecule optimization. The encoder maps x to the la-

ent variable z, while the decoder takes both x and z as input and 

utputs y with better properties. 

However, this objective only models the conditional depen- 

ency between x and y . This is insufficient for constrained 

olecule optimization as the conditional dependency does not 

ecessarily lead to structure similarity. In other words, Y cmo,x = 

 y | p(y ) − p(x ) ≥ 0 , sim (x, y ) ≥ δ, y ∈ ( M) } is a subset of Y mo,x =
 y | p(y ) − p(x ) ≥ 0 , y ∈ ( M) } . Therefore, it is crucial to model the

tructure similarity between molecule pairs in the optimization. 

Junction tree encoder/decoder The junction tree encoder is pro- 

osed by Jin et al. [7] . The intuition is that molecules can be

epresented both at graph level and junction-tree level. Viewing 
3 
olecules as graphs, it first extracts tree and graph level node em- 

eddings via message passing neural network, 

 

t 
ji = g 1 

( 

f i , f j , 
∑ 

j∈ N(i ) k 

e k j 

) 

x i = g 2 

( 

f i , 
∑ 

j∈ N(i ) 

e T ji 

) 

(2) 

here e t 
ji 

is the message transmitted from node i to node j in 

he tth layer, f i is the feature of node i and g 1 , g 2 are neural

etworks. After T layers of message passing layers, the node em- 

edding is aggregated from the last message passing layer. Note 

hat the parameters in each message passing layer are shared. 

herefore, for input pair (G x , G y ) , by processing the message pass-

ng on graphs and junction trees, we obtain the node embed- 

ing integrated from the inward messages and the node fea- 

ures. The paired tree and graph representations are formulated as 

 x T 1 , x 
T 
2 , . . . , x 

T 
n T 

} , { y T 1 , y T 2 , . . . , y T m T 
} , { x G 

1 
, x G 

2 
, . . . , x G n G 

} , { y G 
1 
, y G 

2 
, . . . , y G m G 

} .
Jin et al. [9] further generates a molecule from its em- 

edding by constructing the junction tree node by node in 

 depth first manner. In t th step, we obtain edge set E t =
 (i 1 , j 1 ) , (i 2 , j 2 ) , . . . , (i m 

, j m 

) } . For node i t , we update the message

 i t ,i t 
through a tree GRU proposed by Jin et al. [7] : 

 i t , j t = GRU ( f i t , { h k,i t (k,i t ) ∈ E t ,k � = i t } ) (3) 

Here f i t is node feature. When the model reaches node i t , it 

rst decides whether to append a new node or backtrack to the 

scendant of i t . The probability is computed via a network: 

 t = τ

( 

W 

d 
1 f i t + W 

d 
2 

∑ 

(k,i t ) ∈ E t 
h k,i t 

) 

p t = σ (W 

d 
3 h t ) (4) 

here σ (·) denotes Sigmoid function. If the model decides to ex- 

end a new node to the current position i t , the label is predicted

s follows: 

q t = Sof tmax (W 

l 
1 h i t , j t ) (5) 

Here q t is a distribution over the node vocabulary that masks 

ut any invalid paths of molecular generation. We employ the 

unction Tree Encoder into our model but revise the decoder to 

ccept structural conditions. 

.2. Structure conditioned ELBO 

We first describe the constrained molecule optimization process 

f our model. Specifically, given a molecule x , the target molecule 

 is generated by the following process: 

1. Choose a molecule x ∼ X; 

2. Choose a latent vector z ∼ N (0 , I) 

3. Compute the structural similarity c from x and the desired 

molecule y . 

here N (0 , I) is the isotropic Gaussian distribution. According to 

he generating process above, our model first aims to model the 

tructural similarity c between the molecule pair (x, y ) and learns 

 conditional distribution p(y | x, c) . Therefore, by Jensen’s inequal- 

ty, the log-likelihood can be written as: 

og p(Y | X, C) = log 
∫ 

z p(y, z| x, c)d z 

≥ E z∼q (z| x,y,c) log p(y | z,x,c) p(z| y,c) 
q (z| x,y,c) 

= E z∼q (z| x,y,c) log p(y | z, x, c) 

− KL (q (z| x, y, c) | p(z| x, c)) 

= L SC 

(6) 
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Fig. 2. The framework of SCVAE. It first extracts tree and graph node embeddings of the input pair and performs soft graph alignment at two-level to model structure 

conditions and outputs target molecule with desired property. We ignore the information flow from the input molecule X to the decoder and the molecule pair (X, Y ) to the 

latent variable Z in this figure for simplicity. c T 
train 

, c G 
train 

are treated as the structure condition in training while c T gen , c 
G 
gen are extracted with a structure condition approximator 

in generation/optimization. 
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here z is the latent variable, q (z| x, y, c) is the variational poste- 

ior to approximate the true posterior p(z| x, y, c) and L SC is the

tructure conditioned evidence lower bound. We assume p(z| x, c) 

s the standard Gaussian distribution. Similar to VAE, we employ 

he reparameterization trick to obtain z: 

μ, log σ 2 ) = g(x, y, c;φg ) 

z ∼ N (z;μ, σ 2 I) 
(7) 

here φg is the parameter of the neural network g. 

A naive implementation to this objective is to treat c as a 

olecule similarity metric in the real world (e.g. the Tanimoto 

imilarity over Morgan Fingerprints), and employs a mapping f : 

X , Y) → R 

+ . However, this will either lead to CPU-bound meth- 

ds (e.g. RDKIT Toolkit 1 ) or require additional training data and a 

etwork to precisely approximate f . Therefore, we seek for model- 

ng the similarity of molecules from their topology. 

.3. Two-level alignment representation 

We first obtained tree and graph representations of paired 

olecules (X, Y ) from the junction tree encoder from Eq. (2) . Then

e employ the graph alignment to exploit the structure similar- 

ty of molecules from their topology. The intuition behind this is 

hat the node embeddings already contains the information of sub- 

tructures after the message passing layers. Identifying these simi- 

ar substructures is essential as it is the key to model the similarity 

f molecule pairs. We borrow the idea of the graph alignment to 

atch the similar nodes. More specifically, given a node embed- 

ing x G 
i 

in molecule graph G 

x as an example, we need to identify 

he most similar node y G 
j 

from molecule graph G 

y . 

As shown in Fig. 2 , we employ soft graph alignment on both 

ree’s node embeddings and graph’s node embeddings to exploit 

wo-tilevel molecule alignment representation. At tree level, for 

ree node x T in molecule x , we compute the similarity between 
i 

1 This toolkit is used for evaluating the chemical properties of molecules. https:// 

ww.rdkit.org/ 

l

e

a

4 
ree node y T 
j 

in molecule y and x T 
i 

as a probability of alignment 

rom x i to y j , 

 

T 
ji = 

exp σ (x T 
i 
, y T 

j 
) ∑ 

j 

exp σ (x T 
i 
, y T 

j 
) 
, (8) 

here σ () is a affinity metric between node embeddings across 

 and y such as distance affinity. w 

T 
ji 

measures how y T 
j 

shares the 

ame local pattern of substructure as x T 
i 

. Meanwhile, we compute 

he probability of x T 
i 

being similar to y T 
j 

as well: 

 

T 
i j = 

exp σ (x T 
i 
, y T 

j 
) ∑ 

i 

exp σ (x T 
i 
, y T 

j 
) 

(9) 

The reason why we compute w 

T 
ji 

and w 

T 
i j 

bidirectionally is that 

hese probabilities are normalised over different molecule graphs. 

hen, we assemble similar node embeddings across two molecule 

raphs according to the node similarity: 

 

T 
yx = g 1 

( ∑ 

i 

[ 

x T i , 
∑ 

j 

y T j w 

T 
ji 

] ) 

 

T 
xy = g 1 

( ∑ 

j 

[ 

y T j , 
∑ 

i 

x T i w 

T 
i j 

] ) 

(10) 

here g 1 is a neural network. By this alignment, the node repre- 

entations of x and y will match to each other in the hidden space. 

e further use a neural network f () to map m 

T 
xy and m 

T 
yx to a low

imensional alignment representation, 

 

T 
train = f ([ m 

T 
xy , m 

T 
yx ]) , (11) 

Similarly, we obtain the alignment representation c G 
train 

at graph 

evel by following the above tree-level paradigm with graph node 

mbeddings { x G 
1 
, x G 

2 
, . . . , x G n G 

} , and { y G 
1 
, y G 

2 
, . . . , y G m G 

} . c G 
train 

and c T 
train 

re treated as the structure similarity c in the training process. 

https://www.rdkit.org/
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Table 1 

P-logP optimization results on ZINC dataset. We report property improvement and 

diversity over the successfully optimized candidates. 

Method δ ≥ 0 . 6 δ ≥ 0 . 4 

Improvement Diversity Improvement Diversity 

MMPA 1.65 ± 1.44 0.329 3.29 ± 1.12 0.496 

JT-VAE 0.28 ± 0.79 – 1.03 ± 1.39 –

GCPN 0.79 ± 0.63 – 2.49 ± 1.30 –

VSeq2Seq 2.33 ± 1.17 0.331 3.37 ± 1.75 0.471 

VJTNN 2.33 ± 1.24 0.333 3.55 ± 1.67 0.480 

SCVAE(L1) 2 . 66 ± 1 . 25 0.308 3 . 95 ± 1 . 46 0.512 

SCVAE(L2) 2.57 ± 1.17 0.291 3.89 ± 1.57 0.502 
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.4. Structure condition approximator 

The structure alignment representation c is obtained from 

olecule pairs (x, y ) in training according to Eq. (8) . Unfortunately, 

he target molecule y is absent in the decoding and testing pro- 

ess. However, the structure alignment representation is obtained 

y comparing the substructure similarity of two molecules, this en- 

ightens us to use a surrogate model to recover c from x . To lever-

ge the structure condition in generation, we therefore introduce 

 structure condition approximator f c (SCA in Fig. 2 , a multi layer 

erceptron) to extract c from x . 

 

T 
gen = f c (x T ) , c G gen = f c (x G ) (12) 

he loss function is: 

 reg = | c T gen − c T train | 1 + | c G gen − c G train | 1 (13) 

The new molecule is decoded from the representation of the 

arget molecule via a probabilistic decoder p(y | x, z, c) . According to 

q. (3) , we model the approximate posterior as isomorphic Gaus- 

ian and sample the latent vector at tree and graph level z T and 

 

G . The structure alignment representation c is extracted by the 

tructure condition approximator. Therefore, the tree and graph 

epresentation of the new molecule is y T = [ x T , c T , z T ] and y G =
 x G , c G , z G ] . We revise the latent space of junction tree decoder to

ccept the structure alignment representation. The probabilistic de- 

oder takes the two-level representation as input and outputs the 

arget molecule. The overall loss function is, 

 = −L SC + λL reg (14) 

here λ is a hyper-parameter. 

. Experiments 

In this section, we qualitatively and quantitatively analyse 

he performance of the proposed method on various constrained 

olecule optimization tasks. 

.1. Dataset 

The experimental design of the dataset is the same as Jin 

t al. [9] . For constrained molecule optimization, we constrain 

he output molecule Y and the input X by sim (X, Y ) ≥ δ, where

im (X, Y ) denotes Tanimoto Similarity over Morgan Fingerprints of 

wo molecules. We conduct experiments on ZINC [39] and QM9 

40] datasets. The training set consists of constrained molecule 

airs (X, Y ) sampling from each dataset with a significant property 

mprovement. We focus on four intrinsic properties of molecules 

nd evaluate the proposed method on following tasks: 

Penalized-logP (P-logP) is a logP value which take the inac- 

essibility and number of rings into account. For P-logP optimiza- 

ion, we first train our model with two similarity constraints δ = 

 . 4 / 0 . 6 . The training set includes 99 K/79 K molecule pairs respec-

ively for ZINC dataset, and 33 K/21 K for QM9 dataset. The testing 

et contains 800 molecules for both datasets. 

Drug likeness (QED) measures the drug likeness of a molecule, 

hich is bounded within the range (0,1.0). Our task is to optimize 

he molecule with QED within (0.7,0.8) into a higher range (0.9,1.0). 

he training set includes 88K and 31 K molecule pairs with similar- 

ty constraints δ = 0 . 4 for ZINC and QM9 dataset respectively. The 

esting set contains 800 molecules for both datasets. 

Human β-secretase 1(BACE) measures the likelihood of a 

olecule to be an inhibitor of human β-secretase, which is 

ounded within the range (0,1.0). Our task is to optimize the 

olecule with BACE within (0.0,0.01) into a higher range (0.4,1.0). 

he training set includes 23 K and 16 K molecule pairs with sim- 

larity constraints δ = 0 . 4 for ZINC and QM9 dataset respectively. 

he test set has 800 molecules for both datasets. 
5 
Brain-blood barrier penetration(BBBP) measures the likeli- 

ood of a molecule to penetrate the brain-blood barrier, which 

s bounded within the range (0,1.0). Our task is to optimize the 

olecule with BBBP within (0.0,0.3) into a higher range (0.9,1.0). 

he training set includes 31 K and 22 K molecule pairs with sim- 

larity constraints δ = 0 . 4 for ZINC and QM9 dataset respectively. 

he test set has 800 molecules for both datasets. 

.2. Baselines 

We compare the proposed method with the baselines as fol- 

ows, MMPA [41,42] aims to discover underlying rules to mostly 

mprove the molecule property. JT-VAE [7] is the state-off-the- 

rt molecule generative method as it first achieves 100% chem- 

cally valid output molecules. For optimization tasks, it searches 

he optimized molecules by multi-step gradient ascend with re- 

pect to the property in the latent space. VSeq2Seq [43] employs 

olecule SMILES strings and learns a sequence-to-sequence trans- 

ation model, with latent code added into the architecture of Bah- 

anau et al. [44] . VJTNN [9] , built upon JT-VAE, is trained with

olecule pairs and optimizes a molecule in a one-step manner. 

CPN [8] combines reinforcement learning and graph neural net- 

ork to generate a molecule by adding atoms and bonds itera- 

ively. Moreover, adversarial learning is employed to generate re- 

listic molecules. 

.3. Evaluation metrics 

Following the same testing protocol proposed by Jin et al. [9] , 

very input molecule is decoded in 20 times with different la- 

ent vector z sampled from N (0 , I) . For JT-VAE, we do 80 steps

f gradient ascent to improve the target properties in the latent 

pace, and choose the one with the best properties. For the task 

f P-logP optimization, the reported molecules are the success- 

ully optimized molecules with the highest property improvement 

nd under the similarity constraint. We further calculate pairwise 

verage Tanimoto distance over the valid optimized molecules as 

ist(X, Y ) = 1 − sim (X, Y ) . This metric measures how many diverse

olecules the models generate with an input, which refers to Di- 

ersity or Div. in Tables 1 and 2 respectively. This is important 

o measure the capacity of different models. Although constrained 

olecule optimization only allows limited modification to molec- 

lar structures, good models can still exhibit the diversity of such 

odification. For the tasks of QED, BACE and BBBP optimization, 

e define a molecule is successfully translated if there is one out- 

ut that meets the similarity constraint and the property is in 

he desired range. We report diversity and measure the rate of 

olecules being successfully translated, which refers to the trans- 

ation accuracy. Moreover, we report the novelty of the molecules 

hich are the rate of the successfully optimized molecules unseen 

n the training set. 
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Table 2 

QED, BACE and BBBP optimization results on ZINC dataset. We rerun the baselines on BACE and BBBP tasks under our settings. The other baseline results are 

copied from Jin et al. [9] . 

QED BACE BBBP 

Method Acc. Div. Nov. Acc. Div. Nov. Acc. Div. Nov. 

MMPA 32.9% 0.236 99.9% 15.3% 0.276 100.0% 31.6% 0.182 99.9% 

JT-VAE 8.8% – – 1.7% – – 2.4% – –

GCPN 9.4% 0.216 100.0% 9.6% 0.209 100.0% 22.7 0.193 100.0% 

VSeq2Seq 58.5% 0.331 99.6% 18.9% 0.254 99.1% 35.1% 0.215 100.0% 

VJTNN 57.0% 0.389 98.1% 17.6% 0.288 100.0% 38.3% 0.263 100.0% 

SCVAE(L1) 58.2% 0.401 97.9% 23.3% 0.291 100.0% 41.9% 0.284 100.0% 

SCVAE(L2) 58.1% 0.423 98.6% 21.6% 0.274 100.0% 40.7% 0.262 100.0% 

Table 3 

P-logP optimization results on QM9 dataset. We report property improvement and diversity 

over the successfully optimized candidates. 

Method δ ≥ 0 . 6 δ ≥ 0 . 4 

Improvement Diversity Improvement Diversity 

MMPA 1.31 ± 1.05 0.296 2.31 ± 1.29 0.401 

JT-VAE 0.34 ± 0.31 – 1.01 ± 0.96 –

GCPN 0.67 ± 0.58 – 1.50 ± 1.24 –

VSeq2Seq 2.18 ± 1.31 0.312 2.56 ± 1.67 0.423 

VJTNN 2.16 ± 1.16 0.301 2.61 ± 1.79 0.441 

SCVAE(L1) 2 . 31 ± 1 . 04 0.257 3 . 12 ± 1 . 36 0.451 

SCVAE(L2) 2.24 ± 1.14 0.242 2.96 ± 1.61 0.445 

Table 4 

QED, BACE and BBBP optimization results on QM9 dataset. 

QED BACE BBBP 

Method Acc. Div. Nov. Acc. Div. Nov. Acc. Div. Nov. 

MMPA 29.6% 0.229 99.9% 17.5% 0.236 100.0% 25.9% 0.171 99.9% 

JT-VAE 9.3% – – 2.3% – – 2.9% – –

GCPN 10.2% 0.246 100.0% 16.4% 0.216 100.0% 15.1% 0.173 100.0% 

VSeq2Seq 48.9% 0.343 99.4% 21.2% 0.260 99.8% 36.7% 0.245 100.0% 

VJTNN 46.5% 0.379 99.2% 23.7% 0.263 100.0% 39.4% 0.247 100.0% 

SCVAE(L1) 51.9% 0.384 98.7% 26.3% 0.268 100.0% 42.0% 0.257 100.0% 

SCVAE(L2) 48.7% 0.381 99.1% 25.8% 0.252 100.0% 41.2% 0.249 100.0% 
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.4. Performance 

Tables 1 and 3 shows the results of P-logP optimization. Our 

odel outperforms the baseline methods on property improve- 

ent by a large margin and diversity. Particularly, our model 

chieves significant improvement comparing to traditional CVAE- 

ased methods including JT-VAE, VJTNN and VSeq2Seq. It is be- 

ause the proposed method leverages the topology similarity of 

olecule pairs as condition and formulates it as the graph align- 

ent. Moreover, our unsupervised soft graph alignment strategy 

acilitates the model to effectively explore the chemical space for 

etter molecules. 

Tables 2 and 4 demonstrates QED, BACE and BBBP optimization 

esults. As MMPA and VSeq2Seq are not initially proposed for con- 

trained molecule optimization, we modify them following the ex- 

eriment details in Jin et al. [9] for fair comparison. SCVAE per- 

orms favorably than the other CVAE-based methods in translation 

ccuracy, diversity and novelty. This indicates our model often gen- 

rates new and diverse outputs with high translation accuracy. No- 

ice that all methods performs better on the ZINC dataset than the 

M9 dataset, since we obtain more training data on the former 

ataset. 

We further discuss the influence of different distance metrics 

n Eq. (13) on SCVAE. In experiment, we employ L1 and L2 loss in

q. (13) to train the structure condition approximator f c respec- 

ively. We find L1 loss is more stable than L2 loss, since L2 loss 

s prone to result in a trivial solution that c T gen = c T 
train 

= 0 , c G gen =
 

G 
train 

= 0 in practice. This trivial solution minimizes the loss in 

q. (13) , but the structure similarities c T gen , c 
T 
train 

, c G gen , c 
G 
train 

are equal
6 
o zero and provide no information for the structure constraint, 

nd thus leads to degenerated optimization results. Meanwhile, we 

nd L1 loss is more stable and less likely to yield such trivial solu- 

ion. Therefore, it is recommended to employ L1 loss in Eq. (13) to 

rain the structure condition approximator f c . In the experiment, 

e replace the L1 loss by the L2 loss in Eq. (13) and train the

hole framework for several times until it obtains reasonable re- 

ults. We denote SCVAE with L1 loss and L2 loss as SCVAE(L1) and 

CVAE(L2) respectively. As shown in Tables 1–4 , SCVAE(L1) outper- 

orms SCVAE(L2) on all datasets. However, SCVAE(L2) still achieves 

ompetitive results compared with the baselines. This shows that 

he performance of our model is robust to different distance met- 

ics. However, we employ L1 loss instead of L2 loss in Eq. (13) to

revent from numerical instability. 

Recently, it is popular to employ the subgraph-based opti- 

ization methods for constrained molecule optimization. However, 

hese methods are two-step and extracting property-related sub- 

raphs is non-trivial. Compared with the subgraph-based meth- 

ds, our method is end-to-end , and thus is more efficient to train 

45] . The major difficulty of constrained molecule optimization is 

he large chemical space and discrete nature of molecules. Our 

ethod formulates the optimization problem as a graph-to-graph 

ranslation, and learns a mapping from the input molecule to those 

ith improved property. The whole framework is trained on paired 

raining data, and thus reduce the searching space. To preserve 

tructural similarity, our model first leverages the graph alignment 

f two-level molecule structures to model the similarity C of pair 

olecules (X, Y ) . Then, a structure-aware VAE models the opti- 

ization problem as learning a conditional distribution p(Y | X, C) . 
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Table 5 

Sensitivity study of the hyperparameter λ on the P-logp Optimization task on ZINC dataset. 

λ

SCVAE(L1) SCVAE(L2) 

Improvement Diversity Improvement Diversity 

0.01 3.72 ± 1.34 0.496 3.79 ± 1.31 0.500 

0.05 3.83 ± 1.47 0.520 3.85 ± 1.49 0.513 

0.1 3.95 ± 1.46 0.512 3.82 ± 1.47 0.492 

0.5 3.92 ± 1.54 0.517 3.89 ± 1.57 0.502 

1 3.85 ± 1.39 0.525 3.80 ± 1.52 0.497 

5 3.91 ± 1.41 0.511 3.82 ± 1.45 0.511 

Fig. 3. Optimization results of P-logP task. The input and the output molecules has the same structure in the dashed line. In (a) and (b), SCVAE preserves the scaffold and 

replaces the hydrophilic-group with lipophilic-group. In (c) and (d), SCVAE mainly changes the connectivity of subgraphs and adds lipophilic-group to improve P-logp. 
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nce the model is trained, one can efficiently sample the opti- 

ized molecules with diverse structures. 

.5. Sensitivity study 

We further analyze the influence of hyper-parameter λ, which 

ontrols the trade-off between two terms in Eq. (14) . We rerun 

ur model with λ varies in { 0 . 01 , 0 . 05 , 0 . 1 , 0 . 5 , 1 , 5 } on the P-logp

ask on ZINC dataset. The result is shown in Table 5 , SCVAE(L1) 

nd SCVAE(L2). We notice that a small λ will lead to a slight de- 

line in performance, since a small penalty on Eq. (13) is insuf- 

cient for the structure condition approximator f c to approximate 

he structure similarity in the decoding process. Meanwhile, a large 

pose a large penalty on Eq. (13) lead to the over-fitting of f c ,

nd thus yields degenerated results. Moreover, a large λ also lead 

o a unstable training process and is likely to result in a trivial so- 

ution c T gen = c T 
train 

= 0 , c G gen = c G 
train 

= 0 . Hence, these similarity em-

eddings provide no information for the structure condition. In 

ractice, we choose a proper λ to balance the scale of two terms 

n Eq. (14) for the best result. 
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.6. Visualization 

We further visualize the structure modification in the con- 

trained optimization process in Fig. 3 . It should be noted that 

hese results are not hand-made solutions. The output molecules 

ave large property improvement over the input ones while the 

tructures in the dashed line remains the same. In Fig. 3 (a) and (b),

ur model preserves the scaffolds of the input molecules and sim- 

ly replaces the hydrophilic-group with the lipophilic-group. This 

s known as an effective way to improve the P-logP of molecules. In 

ig. 3 (c) and (d), our model changes the connectivity of subgraphs 

nd adds the lipophilic-group to improve the P-logP value. This in- 

icates that SCVAE can yield reasonable and explainable solutions 

ith limited modification in molecule structure. 

To further investigate the validity of soft graph alignment for 

opology similarity, we visualize the substructure embeddings of 

 pair of molecules with similar structure via T-SNE [46] for SC- 

AE and VJTNN. As shown in Fig. 4 , the first two columns are

olecules with similar structure; the second two columns are the 

lots of node representations of molecule pairs in the latent space 
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Fig. 4. Visualization of molecule representations. The dots with different shapes represent node embeddings in different molecules. 
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or our model and VJTNN. Within over 350 different subgraphs in 

he training pairs, SCVAE still aligns most similar subgraphs to ex- 

loit structure similarity across different molecules. Therefore, the 

roposed method indeed leverages structure similarity as a condi- 

ion for constrained molecule optimization. 

. Conclusion 

In this paper, we have proposed a novel structure-aware condi- 

ional VAE framework, namely SCVAE. SCVAE leverages the struc- 

ure similarities in the molecule pairs as a condition to facilitate 

he constrained molecule optimization. To do this, viewing molecu- 

ar graph as a structural condition, SCVAE utilizes graph alignment 

f tree and graph level molecule structures in an unsupervised 

anner to bind the structure conditions between two molecules. 

hen, this structure condition bridges the gap between the input 

nd output molecules via a probabilistic encoder-decoder architec- 

ure. By optimizing a structure conditioned evidence lower bound, 

CVAE is capable of effectively exploring the chemical space for 

etter molecules under the similarity constraint. Qualitative and 

uantitative results show SCVAE outputs the molecules with bet- 

er properties as well as limited structure modification. 
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