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ABSTRACT

The goal of molecule optimization is to optimize molecular properties by modifying molecule structures.
Conditional generative models provide a promising way to transfer the input molecules to the ones with
better property. However, molecular properties are highly sensitive to small changes in molecular struc-
tures. This leads to an interesting thought that we can improve the property of molecules with lim-
ited modification in structure. In this paper, we propose a structure-aware conditional Variational Auto-
Encoder, namely SCVAE, which exploits the topology of molecules as structure condition and optimizes
the molecular properties with constrained structural modification. SCVAE leverages graph alignment of
two-level molecule structures in an unsupervised manner to bind the structure conditions between
two molecules. Then, this structure condition facilitates the molecule optimization with limited struc-
tural modification, namely, constrained molecule optimization, under a novel variational auto-encoder
framework. Extensive experimental evaluations demonstrate that structure-aware CVAE generates new
molecules with high similarity to the original ones and better molecular properties.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Molecule optimization is one fundamental problem in bio-
chemistry since it helps to generate molecular structures with spe-
cific desired properties [1,2]. However, it still remains challeng-
ing because the space of possible molecules is vast and search-
ing in such space is burdensome owing to its combinatorial nature
[3]. Especially, molecular properties are highly sensitive to small
changes in molecular structures [4]. For example, one could in-
crease the solubility of ethyl-benzene by simply changing the hy-
drogen on the methyl to a hydroxyl. Such property sensitivities
of molecules actually attract chemists’ interests because a small
change in a molecule indicates small changes in the synthetic
paths. This leads to constrained molecule optimization shown in
Fig. 1, which requires limited structural modifications but signifi-
cant improvements on molecular properties.

Nowadays, it becomes natural to apply deep learning on
molecule optimization due to its successes in many other fields.
Prior deep learning works mainly focus on multi-step solutions.
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Traditional VAE based methods resort to representation learning
with well-designed variational auto-encoder (VAE) architecture to
approach the potential molecular space [5-7]. Then, these meth-
ods do multi-step gradient ascent with respect to the certain prop-
erty in the latent space to search the better molecules. Some rein-
forcement learning (RL) based methods adjust the hidden molecu-
lar space by treating molecular properties as rewards [8]. Beyond
that, Jin et al. [9] views molecule optimization as paired graph-
to-graph translation to avoid the time and computational cost in
multi-step solutions. It learns molecule optimization as an one-
step projection from a pair of molecules with significantly im-
proved property and similar structure in the pair. Another way to
model molecule optimization is to isolate the property and struc-
ture in the latent space [10] via disentanglement. Recent literature
focuses on the subgraph-based methods which combine different
motifs for the synthesized molecules. Despite fruitful results ob-
tained by those deep learning methods, few methods focus on con-
strained molecule optimizations. The challenge still remains how
to model property sensitivities with structural constraints. In other
words, can we leverage the structural similarities as a condition to
facilitate the constrained molecule optimization?

Recalling methods in deep graph learning, graph alignment has
received increasing attention to capture correlated structural sim-
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Fig. 1. An instance for constrained molecule optimization. Only limited changes in
structure are allowed to improve the drug likeness (QED) of a molecule. The similar-
ity is computed via Tanimoto Similarity over Morgan Fingerprints of two molecules.

ilarities among graphs. The goal of graph alignment is to identify
similar nodes across multiple graphs [11,12]. However, it is non-
trivial to model the similarity of molecules with the graph align-
ment. First of all, it is laborious and time-consuming of manu-
ally identifying anchor points or anchor edges in molecule pairs
for alignment. Besides, the one-to-one mapping setting of current
graph alignment methods hinders its implementation to align the
similar nodes and substructures in the molecule graphs as differ-
ent molecules have different numbers and types of nodes (atoms).
Most importantly, the substructures in molecules are vital to the
molecule property while the graph alignment only seek for corre-
spondence at node level.

To this end, we propose structure-aware Conditional Variational
Auto-Encoder (SCVAE) for constrained molecule optimization. SC-
VAE reconstructs one of a pair of two similar molecules by taking
the other one in the pair as a structural condition. We first em-
ploy two-level soft graph alignment to exploit structural similarity
of molecule pairs. Specifically, we decompose a molecule into small
motifs and view it as a tree to model structure similarity at a low-
resolution. Then, at graph level, we examine the atom correspon-
dence for structural similarity at a high-resolution. This strategy
allows us to effectively model the similarity of molecules at dif-
ferent level. Furthermore, we view the structural similarity as an
extra component in the evidence lower bound to train the whole
framework. In the training phase, SCVAE treats the one with poorer
molecular property in the pair as structure condition and recon-
structs the one with better molecular property in the pair so that
we can obtain new molecules with better property by feeding an-
other molecule as a condition in the generation phase. We evaluate
our model on five constrained molecule optimization tasks on ZINC
and QM9 dataset. Experiment results demonstrate that our model
can exploit structural information in paired molecules to achieve
superior optimizing results.

2. Related work
2.1. Molecule generation and optimization

Molecules are usually represented as SMILES strings and graphs.
To ensure the chemical validity of the generated molecules, the for-
mer [5,6] mainly resort to syntactic and semantic constraints in
the decoding process. However, those methods cannot fully main-
tain chemical valence and thus result in invalid molecules. To this
end, Jin et al. [7,9] view molecules as a combination of cliques
and achieve 100% valid molecules by masking the cliques that
lead to invalid results. You et al. [8] further incorporates molecule-
reinforcement rules and domain-specific rewards. Later, given a
starting molecule, Seff et al. [13] explores new ones by locally op-
erating reversible inductive moves.

Although there has been a great breakthrough in molecule
generation, molecule optimization remains challenging. Madhawa
et al. [1], Kusner et al. [5], Dai et al. [6], Jin et al. [7] resort to
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Bayesian Optimization and do gradient ascent w.r.t target property
in the latent space. Shi et al. [2], You et al. [8] start from a sin-
gle atom or subgraph and constantly connect with new parts that
have the most RL rewards until it reaches the maximum length.
Built upon JT-VAE, VJTNN [9] introduces a one-step manner for
constrained molecule optimization by selecting paired molecules
with similar structure and distinct improvement in properties.
Trained with paired data, VJTNN learns a mapping from degener-
ated molecules to the better ones by modeling the difference be-
tween their latent representations. However, it doesn’t model the
structure similarity between the input pairs, which is essential to
constrained molecule optimization. Motivated by the observation
that the molecule properties are highly influenced by small mo-
tifs [14,15], several works decompose the molecules into small sub-
structures and ensembles the motifs that leads to molecules with
better properties [3,16]. Yang et al. [17] performs the molecule op-
timization by simultaneously augmenting the datasets and training
the model via the stochastic expectation maximization method.

2.2. Graph alignment

The purpose of graph alignment is to match the nodes across
different graphs. To do that, most works rely on a set of predefined
anchor nodes as the queries and search for the candidates which
best matches the queries [18]. For example, Yasar and Catalyiirek
[12] leverages anchor points to locate nodes in a certain graph
and compares the position of nodes across different graphs by a
divide-and-conquer strategy. Derr et al. [19] aligns node embed-
ding both on node and graph level with the advantage of adver-
sarial learning. Besides, other works factorize the similarity ma-
trix of the nodes to avoid constructing pair-wise feature compar-
ison [11]. Furthermore, the graph alignment is extended to a more
general scenario that involves multiple graphs using intra- and
inter- structural embedding [20]. The node correspondence discov-
ered by the graph alignment methods naturally hints the struc-
tural similarity between the pairs of graphs, and thus facilitates
various tasks. Sun et al. [21] employs the graph alignment to mit-
igate the non-isomorphic neighborhood structures in knowledge
graphs and yields consistent representations for them. Weskamp
et al. [22] uses the graph alignment to identity the common fea-
tures in different proteins to study the functional relationship from
their structures. Berg and Ldssig [23] develops a searching algo-
rithm to mine the frequent motifs in the interaction network base
on graph alignment. Bai et al. [24] enhances the predictive per-
formance of the graph neural networks by aligning the topological
structures of the graphs. However, it is nontrivial to employ graph
alignment to model the structural similarity across molecules and
improve the constraint molecule optimization. The major challenge
is that the anchor nodes in molecule graphs are under-defined.

2.3. Conditional generative model

Given samples x with corresponding attributes y, the condi-
tional generative model aims to learn a conditional distribution
p(x|y) and generate data by feeding y to the model. Recent works
mainly improve the adversarial generative network (GAN) [25] and
variational auto-encoder (VAE) [26] by modeling a distribution of
hidden space conditioned on the input observation. Two popular
models, namely Conditional-GAN [27] and Conditional-VAE [28],
have been applied into many fields such as image generation [29-
32], text generation [33] and neural language processing [34,35].
These methods usually embed images or text into latent vectors
to constrain the hidden space. Besides, other works resort to dis-
entangle the latent representations regarding the attributes in the
hidden space Li et al. [36]. Then, the conditional generation is
achieved by concatenation of desired latent representations and
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output the real world data by a decoder. Chen et al. [37] extends
GAN with a mutual information cost and thus successfully con-
trols the properties of images by modifying the latent vectors. Hig-
gins et al. [38] learns factorised latent vector in an unsupervised
manner via augmenting the Kullback-Leibler divergence penalty
of the VAE objective. Although the conditional generation models
have greatly facilitated various tasks in many aspects, it remains a
challenge to model the structural condition between the molecule
graphs and restrict the structural similarity across the input and
output molecules, mostly due to the irregular and discrete nature
of molecules. Thus, it is imperative to effectively model the simi-
larity of molecules to boost the constrained molecule optimization.

3. Notations

Viewing molecules as graphs, we denote a molecule graph as
G = {V,E}, where V and E are nodes and edges. Similar to Jin et al.
[7], we extract a junction tree from the molecule graph and denote
itas T = (V,E).

Let f; be the feature of node i. f; represents atom type, va-
lence of an atom or type of a subgraph when i represents a graph
node or a tree node. We denote the node embedding of molecule
x at tree and graph level as xT and xC respectively. X and xC¢
are nt x L and ng x L matrices, where ny and ng are the number
of nodes at tree and graph level and L is the dimension of node
embedding. We adopt Tanimoto Similarity over Morgan Molecule
Fingerprints as the similarity metric between molecule x and y,
denoted as sim(x,y). For constrained molecule optimization, sim-
ilar to Jin et al. [9], we first sample such molecule pairs to sat-
isfy (X.Y) = {(x.y)|p(y) — p(x) = 0.sim(x,y) = 8, x € (M).y € (M)},
where p(-) denotes the property value of a molecule and (M) de-
notes a set of molecules. We denote [, ..., -] as the operator of
concatenation for vectors.

4. Method

In this section, we start with the preliminaries related to the
proposed method. Then we elaborate the details of our method.

4.1. Preliminaries

Conditional generative methods The constrained molecule opti-
mization is closely related to the conditional generative methods.
Given molecule pairs (X,Y), these methods aim to learn the con-
ditional distribution p(Y|X). Usually it is intractable to directly
compute this distribution. Following the framework of conditional
variational auto-encoder, VJTNN [9] optimizes a variational lower
bound, which takes the form:

log p(Y|X) = E, q¢x log p(y1z. x) — KL(q(z|x)|p(2)) = Leso (1)

where KL(-) is the Kullback-Leibler divergence. This objective in-
troduces a variational encoder q(z|x) and a probabilistic decoder
p(y|z, x) for molecule optimization. The encoder maps x to the la-
tent variable z, while the decoder takes both x and z as input and
outputs y with better properties.

However, this objective only models the conditional depen-
dency between x and y. This is insufficient for constrained
molecule optimization as the conditional dependency does not
necessarily lead to structure similarity. In other words, Yemox =
{yIp®) — p(x) = 0,sim(x,y) > 8,y € (M)} is a subset of Ypmox=
{yIp(y) — p(x) = 0,y € (M)}. Therefore, it is crucial to model the
structure similarity between molecule pairs in the optimization.

Junction tree encoder/decoder The junction tree encoder is pro-
posed by Jin et al. [7]. The intuition is that molecules can be
represented both at graph level and junction-tree level. Viewing
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molecules as graphs, it first extracts tree and graph level node em-
beddings via message passing neural network,

e =gl fi i, Z €j

jeN@) k

xi=g(fi Y el (2)
JjeN()
where 95'1' is the message transmitted from node i to node j in
the tth layer, f; is the feature of node i and g;,g, are neural
networks. After T layers of message passing layers, the node em-
bedding is aggregated from the last message passing layer. Note
that the parameters in each message passing layer are shared.
Therefore, for input pair (G, Gy), by processing the message pass-
ing on graphs and junction trees, we obtain the node embed-
ding integrated from the inward messages and the node fea-
tures. The paired tree and graph representations are formulated as
kb L T YE b XS XL 5 YS
Jin et al. [9] further generates a molecule from its em-
bedding by constructing the junction tree node by node in
a depth first manner. In tth step, we obtain edge set Ef =
{(1, j1), (2, J2). .. (im, jm)}. For node i;, we update the message
h;, ;, through a tree GRU proposed by Jin et al. [7]:

hi. i = GRU(Sii- M i yerr ki) 3)

Here f,} is node feature. When the model reaches node i, it
first decides whether to append a new node or backtrack to the
ascendant of i;. The probability is computed via a network:

h[ =T Wldf,t +W2d Z hk,ir
(k.ir)eEt
pe = o (Wih) (4)
where o (-) denotes Sigmoid function. If the model decides to ex-

tend a new node to the current position i, the label is predicted
as follows:

q; = Softmax(W}h;,_;,) (5)
Here q; is a distribution over the node vocabulary that masks
out any invalid paths of molecular generation. We employ the

Junction Tree Encoder into our model but revise the decoder to
accept structural conditions.

4.2. Structure conditioned ELBO

We first describe the constrained molecule optimization process
of our model. Specifically, given a molecule x, the target molecule
y is generated by the following process:

1. Choose a molecule x ~ X;

2. Choose a latent vector z ~ AV (0, 1)

3. Compute the structural similarity ¢ from x and the desired
molecule y.

where A(0,1) is the isotropic Gaussian distribution. According to
the generating process above, our model first aims to model the
structural similarity ¢ between the molecule pair (x,y) and learns
a conditional distribution p(y|x, c). Therefore, by Jensen’s inequal-
ity, the log-likelihood can be written as:

log p(Y|X. C) =log [, p(y. z|x, c)dz

pWlz.x.0)p(zly.c)
= Erqiny.o log q(z[x.y.0)

= IEz~q(z|x,y,c) IOg P(Y|Z, X, C) (6)
—KL(q(z|x, y, c)|p(z|x, ¢))

=Lgc
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Fig. 2. The framework of SCVAE. It first extracts tree and graph node embeddings of the input pair and performs soft graph alignment at two-level to model structure
conditions and outputs target molecule with desired property. We ignore the information flow from the input molecule X to the decoder and the molecule pair (X,Y) to the

latent variable Z in this figure for simplicity. cT
in generation/optimization.
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where z is the latent variable, q(z|x,y, c¢) is the variational poste-
rior to approximate the true posterior p(z|x,y,c) and Lg is the
structure conditioned evidence lower bound. We assume p(z|x, c)
is the standard Gaussian distribution. Similar to VAE, we employ
the reparameterization trick to obtain z:

(i, logo?) = g(x.y.c: ¢g)
z~N(z , 03l

where ¢, is the parameter of the neural network g.

A naive implementation to this objective is to treat ¢ as a
molecule similarity metric in the real world (e.g. the Tanimoto
Similarity over Morgan Fingerprints), and employs a mapping f :
(Xx,Y) — R*. However, this will either lead to CPU-bound meth-
ods (e.g. RDKIT Toolkit!) or require additional training data and a
network to precisely approximate f. Therefore, we seek for model-
ing the similarity of molecules from their topology.

(7)

4.3. Two-level alignment representation

We first obtained tree and graph representations of paired
molecules (X,Y) from the junction tree encoder from Eq. (2). Then
we employ the graph alignment to exploit the structure similar-
ity of molecules from their topology. The intuition behind this is
that the node embeddings already contains the information of sub-
structures after the message passing layers. Identifying these simi-
lar substructures is essential as it is the key to model the similarity
of molecule pairs. We borrow the idea of the graph alignment to
match the similar nodes. More specifically, given a node embed-
ding x,.G in molecule graph G* as an example, we need to identify
the most similar node yf from molecule graph .

As shown in Fig. 2, we employ soft graph alignment on both
tree’s node embeddings and graph’s node embeddings to exploit
two-tilevel molecule alignment representation. At tree level, for
tree node x,.T in molecule x, we compute the similarity between

1 This toolkit is used for evaluating the chemical properties of molecules. https://
www.rdkit.org/

are treated as the structure condition in training while cg,,, cg,, are extracted with a structure condition approximator

tree node yJT in molecule y and x,T as a probability of alignment
from x; to y;,

expo (x[.y})

W= ——————|
5T Sexpo .y
J

(8)

where o () is a affinity metric between node embeddings across
x and y such as distance affinity. W}Ti measures how yJT. shares the

same local pattern of substructure as xl.T. Meanwhile, we compute
the probability of x! being similar to y]T. as well:

expo (I, y1)
Wi = T T 9)
> expo(x;.y;)
1
The reason why we compute iji and wiTj bidirectionally is that
these probabilities are normalised over different molecule graphs.
Then, we assemble similar node embeddings across two molecule
graphs according to the node similarity:

My =g 22 | X YW
j

My = g1\ 22| Vi 2oxiw (10)
j i
where g; is a neural network. By this alignment, the node repre-
sentations of x and y will match to each other in the hidden space.
We further use a neural network f() to map mT and mT to a low
dimensional alignment representation,
C;rruin = f([m)-lc-y7 m;x])s (11)
Similarly, we obtain the alignment representation cmm at graph
level by following the above tree-level paradigm with graph node
embeddings {xG,xg,...,ng},_aqd {yfyg ymG} ¢ and cf
are treated as the structure similarity c in the training process.
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4.4. Structure condition approximator

The structure alignment representation ¢ is obtained from
molecule pairs (x,y) in training according to Eq. (8). Unfortunately,
the target molecule y is absent in the decoding and testing pro-
cess. However, the structure alignment representation is obtained
by comparing the substructure similarity of two molecules, this en-
lightens us to use a surrogate model to recover c from x. To lever-
age the structure condition in generation, we therefore introduce
a structure condition approximator f: (SCA in Fig. 2, a multi layer
perceptron) to extract ¢ from x.

C};-en = fC(XT)7 C‘gen = fC(xG) (12)
the loss function is:
»Creg = |C£en - Cz-rainh + |Cgen - CErain'1 (13)
The new molecule is decoded from the representation of the
target molecule via a probabilistic decoder p(y|x, z, ¢). According to
Eq. (3), we model the approximate posterior as isomorphic Gaus-
sian and sample the latent vector at tree and graph level zT and
Z6. The structure alignment representation ¢ is extracted by the
structure condition approximator. Therefore, the tree and graph
representation of the new molecule is yT =[x, cT,2z"] and y© =
[XC, cC, zC]. We revise the latent space of junction tree decoder to
accept the structure alignment representation. The probabilistic de-
coder takes the two-level representation as input and outputs the
target molecule. The overall loss function is,

L= —LSC + )\Lreg (14)

where X is a hyper-parameter.

5. Experiments

In this section, we qualitatively and quantitatively analyse
the performance of the proposed method on various constrained
molecule optimization tasks.

5.1. Dataset

The experimental design of the dataset is the same as Jin
et al. [9]. For constrained molecule optimization, we constrain
the output molecule Y and the input X by sim(X,Y) > §, where
sim(X,Y) denotes Tanimoto Similarity over Morgan Fingerprints of
two molecules. We conduct experiments on ZINC [39] and QM9
[40] datasets. The training set consists of constrained molecule
pairs (X,Y) sampling from each dataset with a significant property
improvement. We focus on four intrinsic properties of molecules
and evaluate the proposed method on following tasks:

Penalized-logP (P-logP) is a logP value which take the inac-
cessibility and number of rings into account. For P-logP optimiza-
tion, we first train our model with two similarity constraints § =
0.4/0.6. The training set includes 99 K/79 K molecule pairs respec-
tively for ZINC dataset, and 33 K/21 K for QM9 dataset. The testing
set contains 800 molecules for both datasets.

Drug likeness (QED) measures the drug likeness of a molecule,
which is bounded within the range (0,1.0). Our task is to optimize
the molecule with QED within (0.7,0.8) into a higher range (0.9,1.0).
The training set includes 88K and 31 K molecule pairs with similar-
ity constraints 6 = 0.4 for ZINC and QM9 dataset respectively. The
testing set contains 800 molecules for both datasets.

Human pJ-secretase 1(BACE) measures the likelihood of a
molecule to be an inhibitor of human p-secretase, which is
bounded within the range (0,1.0). Our task is to optimize the
molecule with BACE within (0.0,0.01) into a higher range (0.4,1.0).
The training set includes 23 K and 16 K molecule pairs with sim-
ilarity constraints § = 0.4 for ZINC and QM9 dataset respectively.
The test set has 800 molecules for both datasets.
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Table 1
P-logP optimization results on ZINC dataset. We report property improvement and
diversity over the successfully optimized candidates.

Method §>06 §>04
Improvement Diversity Improvement Diversity

MMPA 1.65 + 1.44 0.329 329 + 1.12 0.496
JT-VAE 0.28 + 0.79 - 1.03 £+ 1.39 -

GCPN 0.79 + 0.63 - 249 + 1.30 -
VSeq2Seq 2.33 + 1.17 0.331 337 £ 1.75 0.471
VJTNN 233 +1.24 0.333 3.55 + 1.67 0.480
SCVAE(L1) 2.66+1.25 0.308 3.95+ 146 0.512
SCVAE(L2) 2.57 £ 1.17 0.291 3.89 + 1.57 0.502

Brain-blood barrier penetration(BBBP) measures the likeli-
hood of a molecule to penetrate the brain-blood barrier, which
is bounded within the range (0,1.0). Our task is to optimize the
molecule with BBBP within (0.0,0.3) into a higher range (0.9,1.0).
The training set includes 31 K and 22 K molecule pairs with sim-
ilarity constraints § = 0.4 for ZINC and QM9 dataset respectively.
The test set has 800 molecules for both datasets.

5.2. Baselines

We compare the proposed method with the baselines as fol-
lows, MMPA [41,42] aims to discover underlying rules to mostly
improve the molecule property. JT-VAE [7] is the state-off-the-
art molecule generative method as it first achieves 100% chem-
ically valid output molecules. For optimization tasks, it searches
the optimized molecules by multi-step gradient ascend with re-
spect to the property in the latent space. VSeq2Seq [43]| employs
molecule SMILES strings and learns a sequence-to-sequence trans-
lation model, with latent code added into the architecture of Bah-
danau et al. [44]. VJINN [9], built upon JT-VAE, is trained with
molecule pairs and optimizes a molecule in a one-step manner.
GCPN [8] combines reinforcement learning and graph neural net-
work to generate a molecule by adding atoms and bonds itera-
tively. Moreover, adversarial learning is employed to generate re-
alistic molecules.

5.3. Evaluation metrics

Following the same testing protocol proposed by Jin et al. [9],
every input molecule is decoded in 20 times with different la-
tent vector z sampled from A(0,I). For JT-VAE, we do 80 steps
of gradient ascent to improve the target properties in the latent
space, and choose the one with the best properties. For the task
of P-logP optimization, the reported molecules are the success-
fully optimized molecules with the highest property improvement
and under the similarity constraint. We further calculate pairwise
average Tanimoto distance over the valid optimized molecules as
dist(X,Y) =1 —sim(X,Y). This metric measures how many diverse
molecules the models generate with an input, which refers to Di-
versity or Div. in Tables 1 and 2 respectively. This is important
to measure the capacity of different models. Although constrained
molecule optimization only allows limited modification to molec-
ular structures, good models can still exhibit the diversity of such
modification. For the tasks of QED, BACE and BBBP optimization,
we define a molecule is successfully translated if there is one out-
put that meets the similarity constraint and the property is in
the desired range. We report diversity and measure the rate of
molecules being successfully translated, which refers to the trans-
lation accuracy. Moreover, we report the novelty of the molecules
which are the rate of the successfully optimized molecules unseen
in the training set.
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Table 2
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QED, BACE and BBBP optimization results on ZINC dataset. We rerun the baselines on BACE and BBBP tasks under our settings. The other baseline results are

copied from Jin et al. [9].

QED BACE BBBP
Method Acc. Div. Nov. Acc. Div. Nov. Acc. Div. Nov.
MMPA 32.9% 0.236 99.9% 15.3% 0.276 100.0% 31.6% 0.182 99.9%
JT-VAE 8.8% - - 1.7% - - 2.4% - -
GCPN 9.4% 0.216 100.0% 9.6% 0.209 100.0% 22.7 0.193 100.0%
VSeq2Seq 58.5% 0.331 99.6% 18.9% 0.254 99.1% 35.1% 0.215 100.0%
VJTNN 57.0% 0.389 98.1% 17.6% 0.288 100.0% 38.3% 0.263 100.0%
SCVAE(L1) 58.2% 0.401 97.9% 23.3% 0.291 100.0% 41.9% 0.284 100.0%
SCVAE(L2) 58.1% 0.423 98.6% 21.6% 0.274 100.0% 40.7% 0.262 100.0%
Table 3
P-logP optimization results on QM9 dataset. We report property improvement and diversity
over the successfully optimized candidates.
Method §>06 §>04
Improvement Diversity Improvement Diversity
MMPA 1.31 £ 1.05 0.296 231+ 1.29 0.401
JT-VAE 0.34 + 0.31 - 1.01 £+ 0.96 -
GCPN 0.67 + 0.58 - 1.50 + 1.24 -
VSeq2Seq 2.18 £ 1.31 0.312 2.56 + 1.67 0.423
VJTNN 2.16 = 1.16 0.301 2.61 £ 1.79 0.441
SCVAE(L1) 2.31+1.04 0.257 3.12+1.36 0.451
SCVAE(L2) 224 +£1.14 0.242 2.96 + 1.61 0.445
Table 4
QED, BACE and BBBP optimization results on QM9 dataset.
QED BACE BBBP
Method Acc. Div. Nov. Acc. Div. Nov. Acc. Div. Nov.
MMPA 29.6% 0.229 99.9% 17.5% 0.236 100.0% 25.9% 0.171 99.9%
JT-VAE 9.3% - - 2.3% - - 2.9% - -
GCPN 10.2% 0.246 100.0% 16.4% 0.216 100.0% 15.1% 0.173 100.0%
VSeq2Seq 48.9% 0.343 99.4% 21.2% 0.260 99.8% 36.7% 0.245 100.0%
VJTNN 46.5% 0.379 99.2% 23.7% 0.263 100.0% 39.4% 0.247 100.0%
SCVAE(L1) 51.9% 0.384 98.7% 26.3% 0.268 100.0% 42.0% 0.257 100.0%
SCVAE(L2) 48.7% 0.381 99.1% 25.8% 0.252 100.0% 41.2% 0.249 100.0%

5.4. Performance

Tables 1 and 3 shows the results of P-logP optimization. Our
model outperforms the baseline methods on property improve-
ment by a large margin and diversity. Particularly, our model
achieves significant improvement comparing to traditional CVAE-
based methods including JT-VAE, VJTNN and VSeq2Seq. It is be-
cause the proposed method leverages the topology similarity of
molecule pairs as condition and formulates it as the graph align-
ment. Moreover, our unsupervised soft graph alignment strategy
facilitates the model to effectively explore the chemical space for
better molecules.

Tables 2 and 4 demonstrates QED, BACE and BBBP optimization
results. As MMPA and VSeq2Seq are not initially proposed for con-
strained molecule optimization, we modify them following the ex-
periment details in Jin et al. [9] for fair comparison. SCVAE per-
forms favorably than the other CVAE-based methods in translation
accuracy, diversity and novelty. This indicates our model often gen-
erates new and diverse outputs with high translation accuracy. No-
tice that all methods performs better on the ZINC dataset than the
QM9 dataset, since we obtain more training data on the former
dataset.

We further discuss the influence of different distance metrics
in Eq. (13) on SCVAE. In experiment, we employ L1 and L2 loss in
Eqg. (13) to train the structure condition approximator f. respec-
tively. We find L1 loss is more stable than L2 loss, since L2 loss
is prone to result in a trivial solution that cl,, =l .. =0.¢c%, =
ctcmin =0 in practice. This trivial solution minimizes the loss in

s 1T c .G
Eq. (13), but the structure similarities Cgen, C;pgin> Cgens Crrgin ar€ €qual

to zero and provide no information for the structure constraint,
and thus leads to degenerated optimization results. Meanwhile, we
find L1 loss is more stable and less likely to yield such trivial solu-
tion. Therefore, it is recommended to employ L1 loss in Eq. (13) to
train the structure condition approximator f.. In the experiment,
we replace the L1 loss by the L2 loss in Eq. (13) and train the
whole framework for several times until it obtains reasonable re-
sults. We denote SCVAE with L1 loss and L2 loss as SCVAE(L1) and
SCVAE(L2) respectively. As shown in Tables 1-4, SCVAE(L1) outper-
forms SCVAE(L2) on all datasets. However, SCVAE(L2) still achieves
competitive results compared with the baselines. This shows that
the performance of our model is robust to different distance met-
rics. However, we employ L1 loss instead of L2 loss in Eq. (13) to
prevent from numerical instability.

Recently, it is popular to employ the subgraph-based opti-
mization methods for constrained molecule optimization. However,
these methods are two-step and extracting property-related sub-
graphs is non-trivial. Compared with the subgraph-based meth-
ods, our method is end-to-end, and thus is more efficient to train
[45]. The major difficulty of constrained molecule optimization is
the large chemical space and discrete nature of molecules. Our
method formulates the optimization problem as a graph-to-graph
translation, and learns a mapping from the input molecule to those
with improved property. The whole framework is trained on paired
training data, and thus reduce the searching space. To preserve
structural similarity, our model first leverages the graph alignment
of two-level molecule structures to model the similarity C of pair
molecules (X,Y). Then, a structure-aware VAE models the opti-
mization problem as learning a conditional distribution p(Y|X, C).
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Table 5
Sensitivity study of the hyperparameter A on the P-logp Optimization task on ZINC dataset.
SCVAE(L1) SCVAE(L2)
A
Improvement Diversity Improvement Diversity
0.01 372+ 134 0.496 3.79 £ 1.31 0.500
0.05 3.83 + 147 0.520 3.85 + 1.49 0.513
0.1 3.95 + 1.46 0.512 3.82 + 147 0.492
0.5 392 +1.54 0.517 3.89 +£ 1.57 0.502
1 3.85 +1.39 0.525 3.80 + 1.52 0.497
5 391 + 141 0.511 3.82 + 145 0.511
N : Sim=0.63
' N i >
: 1 - —
o | O/ ; AP-logp=3.76
% /
Sim=0.43
AP-logp=5.29
Sim=0.43

AP-logp=3.40

(c)

Sim=0.47

AP-logp=4.54

(d)

Fig. 3. Optimization results of P-logP task. The input and the output molecules has the same structure in the dashed line. In (a) and (b), SCVAE preserves the scaffold and
replaces the hydrophilic-group with lipophilic-group. In (c) and (d), SCVAE mainly changes the connectivity of subgraphs and adds lipophilic-group to improve P-logp.

Once the model is trained, one can efficiently sample the opti-
mized molecules with diverse structures.

5.5. Sensitivity study

We further analyze the influence of hyper-parameter A, which
controls the trade-off between two terms in Eq. (14). We rerun
our model with A varies in {0.01,0.05,0.1,0.5, 1, 5} on the P-logp
task on ZINC dataset. The result is shown in Table 5, SCVAE(L1)
and SCVAE(L2). We notice that a small A will lead to a slight de-
cline in performance, since a small penalty on Eq. (13) is insuf-
ficient for the structure condition approximator f. to approximate
the structure similarity in the decoding process. Meanwhile, a large
A pose a large penalty on Eq. (13) lead to the over-fitting of f,
and thus yields degenerated results. Moreover, a large A also lead
to a unstable training process and is likely to result in a trivial so-
lution ¢l = ¢l i = 0.5y = iy = 0. Hence, these similarity em-
beddings provide no information for the structure condition. In
practice, we choose a proper A to balance the scale of two terms
in Eq. (14) for the best result.

5.6. Visualization

We further visualize the structure modification in the con-
strained optimization process in Fig. 3. It should be noted that
these results are not hand-made solutions. The output molecules
have large property improvement over the input ones while the
structures in the dashed line remains the same. In Fig. 3(a) and (b),
our model preserves the scaffolds of the input molecules and sim-
ply replaces the hydrophilic-group with the lipophilic-group. This
is known as an effective way to improve the P-logP of molecules. In
Fig. 3(c) and (d), our model changes the connectivity of subgraphs
and adds the lipophilic-group to improve the P-logP value. This in-
dicates that SCVAE can yield reasonable and explainable solutions
with limited modification in molecule structure.

To further investigate the validity of soft graph alignment for
topology similarity, we visualize the substructure embeddings of
a pair of molecules with similar structure via T-SNE [46] for SC-
VAE and VJTNN. As shown in Fig. 4, the first two columns are
molecules with similar structure; the second two columns are the
plots of node representations of molecule pairs in the latent space
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Fig. 4. Visualization of molecule representations. The dots with different shapes represent node embeddings in different molecules.

for our model and VJTNN. Within over 350 different subgraphs in
the training pairs, SCVAE still aligns most similar subgraphs to ex-
ploit structure similarity across different molecules. Therefore, the
proposed method indeed leverages structure similarity as a condi-
tion for constrained molecule optimization.

6. Conclusion

In this paper, we have proposed a novel structure-aware condi-
tional VAE framework, namely SCVAE. SCVAE leverages the struc-
ture similarities in the molecule pairs as a condition to facilitate
the constrained molecule optimization. To do this, viewing molecu-
lar graph as a structural condition, SCVAE utilizes graph alignment
of tree and graph level molecule structures in an unsupervised
manner to bind the structure conditions between two molecules.
Then, this structure condition bridges the gap between the input
and output molecules via a probabilistic encoder-decoder architec-
ture. By optimizing a structure conditioned evidence lower bound,
SCVAE is capable of effectively exploring the chemical space for
better molecules under the similarity constraint. Qualitative and
quantitative results show SCVAE outputs the molecules with bet-
ter properties as well as limited structure modification.
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