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Abstract

Modern distributed training of machine learning models often suffers from high
communication overhead for synchronizing stochastic gradients and model pa-
rameters. In this paper, to reduce the communication complexity, we propose
double quantization, a general scheme for quantizing both model parameters and
gradients. Three communication-efficient algorithms are proposed based on this
general scheme. Specifically, (i) we propose a low-precision algorithm AsyLPG
with asynchronous parallelism, (ii) we explore integrating gradient sparsification
with double quantization and develop Sparse-AsyLPG, (iii) we show that double
quantization can be accelerated by the momentum technique and design acceler-
ated AsyLPG. We establish rigorous performance guarantees for the algorithms,
and conduct experiments on a multi-server test-bed with real-world datasets to
demonstrate that our algorithms can effectively save transmitted bits without per-
formance degradation, and significantly outperform existing methods with either
model parameter or gradient quantization.

1 Introduction

The data parallel mechanism is a widely used architecture for distributed optimization, which has
received much recent attention due to data explosion and increasing model complexity. It decomposes
the time consuming gradient computations into sub-tasks, and assigns them to separate worker
machines for execution. Specifically, the training data is distributed among M workers and each
worker maintains a local copy of model parameters. At each iteration, each worker computes a
gradient from a mini-batch randomly drawn from its local data. The global stochastic gradient is
then computed by synchronously aggregating M local gradients. Model parameters are then updated
accordingly.

Two issues significantly slow down methods based on the data parallel architecture. One is the
communication cost. For example, all workers must send their entire local gradients to the master
node. If gradients are dense, the master node has to receive and send M × d floating-point numbers
per iteration (d is the size of the model vector), which scales linearly with network and model vector
sizes. With the increasing computing cluster size and model complexity, it has been observed in many
systems that such communication overhead has become the performance bottleneck [38, 35]. The
other factor is the synchronization cost, i.e., the master node has to wait for the last local gradient
arrival at each iteration. This coordination dramatically increases system’s idle time.
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To overcome the first issue, many works focus on reducing the communication complexity of
gradients in the data parallel architecture. Generally, there are two approaches. One is quantization
[2], which stores gradients using fewer number of bits (lower precision). The other is sparsification
[1], i.e., dropping out some coordinates of gradients following certain rules. However, existing
communication-efficient algorithms based on data-parallel network still suffer from significant
synchronization cost. To address the second issue, many asynchronous algorithms have recently
been developed for distributed training [17, 23]. By allowing workers to communicate with master
without synchronization, they can effectively improve the training efficiency. Unfortunately, the
communication bottleneck caused by transmitting gradients in floating-point numbers still exists.

In this paper, we are interested in jointly achieving communication-efficiency and asynchronous
parallelism. Specifically, we study the following composite problem

min
x∈Ω

P (x) = f(x) + h(x), f(x) =
1

n

∑n

i=1
fi(x), (1)

where x ∈ Rd is the model vector, fi(x) is smooth, and h(x) is convex but can be nonsmooth.
Domain Ω ⊆ Rd is a convex set. This formulation has found applications in many different areas,
such as operations research, statistics and machine learning [10, 14], e.g., classification or regression.
In these problems, n often denotes the number of samples, and fi(x) denotes the loss function for
sample i, and h(x) represents certain regularizer.

To solve (1), we propose a novel double quantization scheme, which quantizes both model parameters
and gradients. This quantization is nontrivial, because we have to deal with low-precision gradients,
evaluated on low-precision model vectors. Three communication-efficient algorithms are then
proposed under double quantization. We analyze the precision loss of low-precision gradients
and prove that these algorithms achieve fast convergence rates while significantly reducing the
communication cost. The main contributions are summarized as follows.

(i) We propose an asynchronous low-precision algorithm AsyLPG to solve the nonconvex and
nonsmooth problem (1). We show that AsyLPG achieves the same asymptotic convergence rate
as the unquantized serial counterpart, but with a significantly lower communication cost. (ii) We
combine gradient sparsification with double quantization and propose Sparse-AsyLPG to further
reduce communication overhead. Our analysis shows that the convergence rate scales with

√
d/ϕ for

a sparsity budget ϕ. (iii) We propose accelerated AsyLPG, and mathematically prove that double
quantization can be accelerated by the momentum technique [19, 26]. (iv) We conduct experiments
on a multi-server distributed test-bed. The results validate the efficiency of our algorithms.

2 Related Work

Designing large-scale distributed algorithms for machine learning has been receiving increasing
attention, and many algorithms, both synchronous and asynchronous, have been proposed, e.g.,
[22, 4, 17, 12]. In order to reduce the communication cost, researchers also started to focus on cutting
down transmitted bits per iteration, based mainly on two schemes, i.e., quantization and sparsification.

Quantization. Algorithms based on quantization store a floating-point number using limited number
of bits. For example, [25] quantized gradients to a representation of {−1, 1}, and empirically showed
the communication-efficiency in training of deep neural networks. [5, 6] considered the bi-direction
communications of gradients between master and workers. In their setting, each worker transmitted
gradient sign to the master and master aggregated signs by majority vote. [2, 34, 35] adopted an
unbiased gradient quantization with multiple levels. [13] provided a convergence rate of O(1/

√
K)

for implementing SGD with unbiased gradient quantizer in solving nonconvex objectives, where K is
the number of iterations. The error-feedback method was applied in [25, 35, 29] to integrate history
quantization error into the current stage. Specifically, [29] compressed transmitted gradients with
error-compensation in both directions between master and workers, and showed a linear speedup
in the nonconvex case. [15] constructed several examples where simply transmitting gradient sign
cannot converge. They combine the error-feedback method to fix the divergence and prove the
convergence rate for nonconvex smooth objectives. [40] also studied bi-direction compression with
error-feedback. They partitioned gradients into several blocks, which were compressed using different
1-bit quantizers separately. They analyzed the convergence rate when integrating the momentum. [9]
proposed a low-precision framework of SVRG [14], which quantized model parameters for single
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machine computation. [38] proposed an end-to-end low-precision scheme, which quantized data,
model and gradient with synchronous parallelism. A biased quantization with gradient clipping
was analyzed in [37]. [8] empirically studied asynchronous and low-precision SGD on logistic
regression. [28] considered the decentralized training and proposed an extrapolation compression
method to obtain a higher compression level. [36] proposed a two-phase parameter quantization
method, where the parameter in the first phase was the linear combination of full-precision and
low-precision parameters. In the second phase, they set the weight of full-precision value to zero to
obtain a full compression.

Sparsification. Methods on sparsification drop out certain coordinates of transmitted vectors. [1]
only transmitted gradients exceeding a threshold. [33, 30] formulated gradient sparsification into an
optimization problem to balance sparsity and variance. [31] reduced transmissions in the parameter-
server setting by solving a shifted L1 regularized minimization problem. [13] studied a variant of
distributed SGD, i.e., only transmitting a subset of model parameters in each iteration. They showed
a convergence rate of O(1/

√
K) and a linear speedup as long as all of the model parameters were

transmitted in limited consecutive iterations. Recently, [27, 3] analyzed the convergence behavior of
sparsified SGD with memory, i.e., compensating gradient with sparsification error.

Our work distinguishes itself from the above results in: (i) we quantize both model vectors and
gradients, (ii) we integrate gradient sparsification into double quantization and prove convergence,
and (iii) we analyze how double quantization can be accelerated to reduce communication rounds.

Notation. x∗ is the optimal solution of (1). ||x||∞, ||x||1 and ||x|| denote the max, L1 and L2 norms
of x, respectively. For a vector vt ∈ Rd, [vt]i or vt,i denotes its i-th coordinate. {ei}di=1 is the
standard basis in Rd. The base of logarithmic function is 2. Õ(f) denotes O(f · polylog(f)). We
use the proximal operator to handle a nonsmooth function h(x), i.e., proxηh(x) = arg miny h(y) +
1
2η ||y − x||

2. If problem (1) is nonconvex and nonsmooth, we apply the commonly used convergence
metric gradient mapping [20], i.e., Gη(x) , 1

η [x − proxηh(x − η∇f(x))]. x is defined as an
ε-accurate solution if it satisfies E||Gη(x)||2 ≤ ε.

3 Preliminary

Low-Precision Representation via Quantization. Low-precision representation stores numbers
using limited number of bits, contrast to the 32-bit full-precision.2 It can be represented by a tuple
(δ, b), where δ ∈ R is the scaling factor and b ∈ N+ is the number of bits used. Specifically, given a
tuple (δ, b), the set of representable numbers is given by

dom(δ, b) = {−2b−1 · δ, ...,−δ, 0, δ, ..., (2b−1 − 1) · δ}.

For any full-precision x ∈ R, we call the procedure of transforming it to a low-precision representation
as quantization, which is denoted by function Q(δ,b)(x). It outputs a number in dom(δ, b) according
to the following rules:

(i) If x lies in the convex hull of dom(δ, b), i.e., there exists a point z ∈ dom(δ, b) such that
x ∈ [z, z + δ], then x will be stochastically rounded in an unbiased way:

Q(δ,b)(x) =

{
z + δ, with probability x−z

δ ,

z, with probability z+δ−x
δ .

(ii) Otherwise, Q(δ,b)(x) outputs the closest point to x in dom(δ, b).

This quantization method is widely used in existing works, e.g., [38, 2, 34, 9], sometimes under
different formulation. In the following sections, we adopt Q(δ,b)(v) to denote quantization on vector
v ∈ Rd, which means that each coordinate of v is independently quantized using the same tuple
(δ, b). Low-precision representation can effectively reduce communication cost, because we only
need (32 + bd) bits to transmit the quantized Q(δ,b)(v) (32 bits for δ, and b bits for each coordinate),
whereas it needs 32d bits for a full-precision v.

2We assume without loss of generality that a floating-point number is stored using 32 bits (also see, e.g.,
[2, 37]). Our results can extend to the case when numbers are stored with other precision.
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Algorithm 1 AsyLPG

1: Input: S, m, η, bx, b, x̃0 = x0;
2: for s = 0, 1, ..., S − 1 do
3: xs+1

0 = x̃s;
4: Compute∇f(x̃s) = 1

n

∑n
i=1∇fi(x̃s); /* Map-reduce global gradient computation

5: for t = 0 to m− 1 do
6: /* For master:
7: (i) Model Parameter Quantization: Set δx =

||xs+1
D(t)
||∞

2bx−1−1
and quantize xs+1

D(t) subject to (2).
Then, send Q(δx,bx)(x

s+1
D(t)) to workers;

8: (ii) Receive local gradient ζt, update us+1
t = ζt+∇f(x̃s), xs+1

t+1 = proxηh(xs+1
t −ηus+1

t );
9: /* For worker:

10: (i) Receive Q(δx,bx)(x
s+1
D(t)), stochastically sample a data-point a ∈ {1, ..., n}, and calculate

gradient αt = ∇fa(Q(δx,bx)(x
s+1
D(t)))−∇fa(x̃s);

11: (ii) Gradient Quantization: Set δαt = ||αt||∞
2b−1−1

and send the quantized gradient ζt =

Q(δαt ,b)
(αt) to the master;

12: end for
13: x̃s+1 = xs+1

m ;
14: end for
15: Output: Uniformly choosing from {{xs+1

t }m−1
t=0 }

S−1
s=0 .

Distributed Network with Asynchronous Communication. As shown in Figure 1, we con-
sider a network with one master and multiple workers, e.g., the parameter-server setting.

Figure 1: The framework of distributed network with
asynchronous communication. Left: network structure.
Right: training process.

The master maintains and updates a model vec-
tor x, and keeps a training clock. Each worker
can get access to the full datasets and keeps a dis-
joint partition of data. In each communication
round, a worker retrieves x from the master, eval-
uates the gradient g(x), and then sends it back to
the master. Since workers asynchronously pull
and push data during the training process, at a
time t, the master may use a delayed gradient
calculated on a previous xD(t), where D(t) ≤ t. Many works showed that a near linear speedup can
be achieved if the delay is reasonably moderate [17, 23].

4 Algorithms

To solve problem (1), we propose a communication-efficient algorithm with double quantization,
namely AsyLPG, and introduce its two variants with gradient sparsification and momentum accelera-
tion. We begin with the assumptions made in this paper. They are mild and are often assumed in the
literature, e.g., [14, 24].
Assumption 1. The stochastically sampled gradient is unbiased, i.e., for a ∈ {1, ..., n} sampled in
Algorithms 1, 2, 3, Ea[∇fa(x)] = ∇f(x). Moreover, the random variables in different iterations are
independent.

Assumption 2. Each fi(x) in (1) is L-smooth, i.e., ||∇fi(x)−∇fi(y)|| ≤ L||x− y||, ∀x, y ∈ Ω.

Assumption 3. The gradient delay is bounded by some finite constant τ > 0, i.e., t−D(t) ≤ τ , ∀t.

4.1 Communication-Efficient Algorithm with Double Quantization: AsyLPG

In this section, we introduce our new distributed algorithm AsyLPG, with asynchronous communica-
tion and low-precision floating-point representation. As shown in Algorithm 1, AsyLPG divides the
training procedure into epochs, similar to SVRG [14], with each epoch containing m inner iterations.
At the beginning of each epoch, AsyLPG performs one round of communication between the master
and workers to calculate the full-batch gradient ∇f(x̃s), where x̃s is a snapshot variable evaluated at
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the end of each epoch s. This one round communication involves full-precision operation because it is
only performed once per epoch, and its communication overhead is small compared to the subsequent
m communication rounds in inner iterations, where the model parameters are updated.

In inner iterations, the communication between the master and workers utilizes the asynchronous
parallelism described in Section 3. To reduce communication complexity, we propose double
quantization, i.e., quantizing both model parameters and gradients.

Model Parameter Quantization. Prior works [9, 39] showed that simply quantizing model vectors
using a constant tuple (δ, b) fails to converge to the optimal solution due to a non-diminishing
quantization error. In our case, we impose the additional requirement that the chosen (δ, b) satisfies
the following condition (see Step 7 of AsyLPG):

EQ||Q(δx,bx)(x
s+1
D(t))− x

s+1
D(t)||

2 ≤ µ||xs+1
D(t) − x̃

s||2. (2)
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Figure 2: The value of µ in different epochs that guaran-
tees (2). Left: bx = 8. Right: bx = 4. The statistics are
based on a logistic regression on dataset covtype [7].

This condition is set to control the precision loss
of xs+1

D(t) with a dynamic value of ||xs+1
D(t)− x̃

s||2
and a positive hyperparameter µ, so as to achieve
an accurate solution. Note that with a larger µ,
we can aggressively save more transmitted bits
(using a smaller bx). In practice, the precision
loss and communication cost can be balanced by
selecting a proper µ . On the other hand, from
the analysis aspect, we can always find a µ that guarantees (2) throughout the training process, for
any given bx. In the special case when xs+1

D(t) = x̃s, the master only needs to send a flag bit since x̃s

has already been stored at the workers, and (2) still holds. Figure 2 validates the practicability of
(2), where we plot the value of µ required to guarantee (2) given bx. Note that the algorithm already
converges in both graphs. In this case, we see that when bx is 4 or 8, µ can be upper bounded by
a constant. Also, by setting a larger µ, we can choose a smaller bx. The reason µ increases at the
beginning of each epoch is because ||xs+1

D(t) − x̃
s||2 is small. After several inner iterations, xs+1

D(t)

moves further away from x̃s. Thus, a smaller µ suffices to guarantee (2).

Gradient Quantization. After receiving the low-precision model parameter, as shown in Steps 10-11,
a worker calculates a gradient αt and quantizes it into its low-precision representation Q(δαt ,b)

(αt),
and then sends it to the master.

In Step 8, the master constructs a semi-stochastic gradient us+1
t based on the received low-precision

Q(δαt ,b)
(αt) and the full-batch gradient∇f(x̃s), and updates the model vector x using step size η.

The semi-stochastic gradient evaluated here adopts the variance reduction method proposed in SVRG
[14] and is used to accelerate convergence. If Algorithm 1 is run without double quantization and
asynchronous parallelism, i.e., only one compute node with no delay, [24] showed that:
Theorem 1. ([24], Theorem 5) Suppose h(x) is convex and Assumptions 1, 2 hold. Let T = Sm and
η = ρ/L where ρ ∈ (0, 1/2) and satisfies 4ρ2m2 + ρ ≤ 1. Then for the output xout of Algorithm 1,
we have E||Gη(xout)||2 ≤

(
2L(P (x0)− P (x∗))

)
/
(
ρ(1− 2ρ)T

)
.

4.1.1 Theoretical Analysis

Lemma 1. Denote ∆ = d
4(2b−1−1)2

. If Assumptions 1, 2, 3 hold, then for the gradient us+1
t in

Algorithm 1, its variance can be bounded by

E||us+1
t −∇f(xs+1

t )||2 ≤ 2L2(µ+ 1)(∆ + 2)E
[
||xs+1

D(t) − x
s+1
t ||2 + ||xs+1

t − x̃s||2
]
.

Theorem 2. Suppose h(x) is convex, conditions in Lemma 1 hold, T = Sm, η = ρ
L , where

ρ ∈ (0, 1
2 ), and ρ, τ satisfy 8ρ2m2(µ+ 1)(∆ + 2) + 2ρ2(µ+ 1)(∆ + 2)τ2 + ρ ≤ 1. Then, for the

output xout of Algorithm 1 , we have E||Gη(xout)||2 ≤
(
2L(P (x0)− P (x∗))

)
/
(
ρ(1− 2ρ)T

)
.

Remarks. From Theorem 2, we see that if µ = O(1), b = O(log
√
d) and ρ = O( 1

m ), AsyLPG
achieves the same asymptotic convergence rate as in Theorem 1, while transmitting much fewer
bits (b = O(log

√
d) is much smaller than 32). Our analytical results focus on convergence, as

done in [35, 34]. Exactly quantifying the amount of improvement on communication complexity,
however, remains challenging due to the complicated dynamics of parameter updates, e.g., [9, 28].
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Algorithm 2 Sparse-AsyLPG: Procedures for worker

1: (i) Receive Q(δx,bx)(x
s+1
D(t)), stochastically sample a data-point a ∈ {1, ..., n}, and calculate

gradient αt = ∇fa(Q(δx,bx)(x
s+1
D(t)))−∇fa(x̃s);

2: (ii) Gradient Sparsification: Select a budget ϕt and sparsify αt to obtain βt using (3);
3: (iii) Gradient Quantization: Set δβt = ||βt||∞

2b−1−1
, and send ζt = Q(δβt ,b)

(βt) to the master;

We instead show through extensive experiments that our scheme significantly improves upon existing
benchmarks, e.g., Figure 3 and Table 1. Note that AsyLPG can also adopt other gradient quantization
methods (even biased ones), e.g., [37], and similar results can be established.

4.2 AsyLPG with Gradient Sparsification

In this section, we explore how to further reduce the communication cost by incorporating gradient
sparsification into double quantization, and propose a new algorithm Sparse-AsyLPG. As shown in
Algorithm 2, after calculating αt, workers successively perform sparsification and quantization on it.
Specifically, we drop out certain coordinates of αt to obtain a sparsified vector βt according to the
following rules [33]:

βt =
[
Z1
αt,1
p1

, Z2
αt,2
p2

, ..., Zd
αt,d
pd

]
, (3)

where Z = [Z1, Z2, ..., Zd] is a binary-valued vector with Zi ∼ Bernoulli(pi), 0 < pi ≤ 1, and Zi’s
are independent. Thus, βt is obtained by randomly selecting the i-th coordinate of αt with probability
pi. It can be verified that E[βt] = αt. Define ϕt ,

∑d
i=1 pi to measure the sparsity of βt. To reduce

the communication complexity, it is desirable to make ϕt as small as possible, which, on the other
hand, brings about a large variance. The following lemma quantifies the relationship between βt and
ϕt, and is derived based on results in [30].

Lemma 2. Suppose ϕt ≤ ||αt||1
||αt||∞ . Then, for αt =

∑d
i=1 αt,iei and βt generated in (3), we have

E||βt||2 ≥ 1
ϕt
||αt||21. The equality holds if and only if pi =

|αt,i|·ϕt
||αt||1 .

Based on Lemma 2, in Step 2 of Algorithm 2, we can select a sparsity budget ϕt ≤ ||αt||1
||αt||∞ and set

pi =
|αt,i|·ϕt
||αt||1 to minimize the variance of βt. Then, we quantize βt and send its low-precision version

to the master. The master node in Sparse-AsyLPG employs the same model parameter quantization
and updates parameter x in the same manner as in AsyLPG. The asynchronous parallelism is also
applied in the communications between master and workers.

4.2.1 Theoretical Analysis

We first study the variance of the sparsified gradient us+1
t = ζt +∇f(x̃s).

Lemma 3. Supposeϕt ≤ ||αt||1
||αt||∞ , Assumptions 1, 2, 3 hold, and for each i ∈ {1, ..., d}, pi =

|αt,i|·ϕt
||αt||1 .

Denote Γ = d2

4ϕ(2b−1−1)2
+ d

ϕ + 1, where ϕ = mint{ϕt}. Then, for the gradient us+1
t in Sparse-

AsyLPG, we have E||us+1
t −∇f(xs+1

t )||2 ≤ 2L2(µ+ 1)ΓE
[
||xs+1

D(t) − x
s+1
t ||2 + ||xs+1

t − x̃s||2
]
.

Theorem 3. Suppose h(x) is convex, conditions in Lemma 3 hold, T = Sm, η = ρ
L , where

ρ ∈ (0, 1
2 ), and ρ, τ satisfy 8ρ2m2(µ+ 1)Γ + 2ρ2(µ+ 1)τ2Γ + ρ ≤ 1. Then, for the output xout of

Sparse-AsyLPG, we have E||Gη(xout)||2 ≤
(
2L(P (x0)− P (x∗))

)
/
(
ρ(1− 2ρ)T

)
.

Remarks. Setting b = O(log
√
d), we obtain Γ = O(d/ϕ). We then conclude from Theorem 3

that Sparse-AsyLPG converges with a rate linearly scales with
√
d/ϕ, and significantly reduces

transmitted bits per iteration. Note that before transmitting ζt, we need to encode it to a string, which
contains 32 bits for δβt and b bits for each coordinate. Since βt is sparse, we only encode the nonzero
coordinates, i.e., using log d bits to encode the position of a nonzero element followed by its value.
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Algorithm 3 Acc-AsyLPG

1: Input: S, m, bx, b, x̃0, y0
m = x̃0;

2: for s = 1, 2, ..., S do
3: update θs, ηs, xs0 = θsy

s
0 + (1− θs)x̃s−1, ys0 = ys−1

m ;
4: Compute∇f(x̃s−1) = 1

n

∑n
i=1∇fi(x̃s−1); /* Map-reduce global gradient computation

5: for t = 0 to m− 1 do
6: /* For master:
7: (i) Model Parameter Quantization: Set δx =

||xsD(t)||∞
2bx−1−1

, and quantize xsD(t) subject to (4).
Then, send Q(δx,bx)(x

s
D(t)) to workers;

8: (ii) Momentum Acceleration:
Receive local gradient Q(δαt ,b)

(αt), compute ust = Q(δαt ,b)
(αt) +∇f(x̃s−1) and update

yst+1 = proxηsh(yst − ηsust ), xst+1 = x̃s−1 + θs(y
s
t+1 − x̃s−1);

9: /* For worker:
10: (i) Receive Q(δx,bx)(x

s
D(t)), stochastically sample a data-point a ∈ {1, ..., n} and calculate

gradient αt = ∇fa(Q(δx,bx)(x
s
D(t)))−∇fa(x̃s−1);

11: (ii) Gradient Quantization: quantize αt using Step 11 in Algorithm 1;
12: end for
13: x̃s = 1

m

∑m−1
t=0 xst+1;

14: end for
15: Output: x̃S .

4.3 Accelerated AsyLPG

In the above, we mainly focus on reducing the communication cost within each iteration. Here we
propose an algorithm with an even faster convergence and fewer communication rounds. Specifically,
we incorporate the popular momentum or Nesterov technique [19, 26] into AsyLPG. To simplify
presentation, we only present accelerated AsyLPG (Acc-AsyLPG) in Algorithm 3. The method can
similarly be applied to Sparse-AsyLPG.

Algorithm 3 still adopts asynchronous parallelism and double quantization, and makes the following
key modifications. (i) In Step 7, the model parameter quantization satisfies

EQ||Q(δx,bx)(x
s
D(t))− x

s
D(t)||

2 ≤ θsµ||xsD(t) − x̃
s−1||2, (4)

where µ is the hyperparameter that controls the precision loss. θs is the momentum weights and its
value will be specified later. (ii) Momentum acceleration is implemented in Steps 3 and 8, through
an auxiliary variable yst+1. The update of xst+1 combines history information x̃s−1 and yst+1. In
the following, we show that with the above modifications, Acc-AsyLPG achieves an even faster
convergence rate.

Theorem 4. Suppose each fi(x) and h(x) are convex, Assumptions 1, 2, 3 hold, and the domain
Ω of x is bounded by D, such that ∀x, y ∈ Ω, ||x − y||2 ≤ D. Let θs = 2

s+2 , ηs = 1
σLθs

, where

σ > 1 is a constant. If σ, τ satisfy τ ≤ 1
2

[√(
2
γθs

+ θs∆
)2

+ 4(σ−1)
γ − ( 2

γθs
+ θs∆)

]
where

∆ = d
(2b−1−1)2

+ 2, γ = 1 + 2θsµ, then under Algorithm 3, we have E[P (x̃S) − P (x∗)] ≤
Õ((L/m+ LDµ∆/τ + LDµ)/S2).

The bounded domain condition in Theorem 4 is commonly assumed in literature, e.g., [32], and the
possibility of going outside domain is avoided by the proximal operator in Step 8. If b = O(log

√
d)

and µ = O(1), the constraint of delay τ can be easily satisfied with a moderate σ. Then, our
Acc-AsyLPG achieves acceleration while effectively reducing the communication cost.

5 Experiments

We conduct experiments to validate the efficiency of our algorithms. We start with the logistic
regression problem and then evaluate the performance of our algorithms on neural network models.
We further study the relationship of hyperparameter µ and number of transmitted bits.
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Figure 3: (a) and (c): training curves on real-sim and rcv1. (b): decomposition of time consumption (recorded
until the training loss is first below 0.5). (d): # of transmitted bits until the training loss is first below 0.4.

5.1 Evaluations on Logistic Regression.

We begin with logistic regression on dataset real-sim [7]. The evaluations are setup on a 6-server
distributed test-bed. Each server has 16 cores and 16GB memory. The communication among
servers is handled by OpenMPI [21]. We use L1, L2 regularization with weights 10−5 and 10−4,
respectively. The mini-batch size B = 200 and epoch length m = d nB e. The following six algorithms
are compared, using a constant learning rate (denoted as lr) tuned to achieve the best result from
{1e−1, 1e−2, 5e−2, 1e−3, 5e−3, ..., 1e−5, 5e−5}.
(i) AsyLPG, Sparse-AsyLPG, Acc-AsyLPG. We set bx = 8 and b = 8 in these three algorithms. The
sparsity budget in Sparse-AsyLPG is selected as ϕt = ||αt||1/||αt||∞. We do not tune ϕt to present
a fair comparison. Parameters in Acc-AsyLPG are set to be θs = 2/(s+ 2) and ηs = lr/θs.

(ii) QSVRG [2], which is a gradient-quantized algorithm. We implement it in an asynchronous-
parallelism way. Its gradient quantization method is equivalent to Step 11 in AsyLPG. If run with
synchronization and without quantization, QSVRG and AsyLPG have the same convergence rate.
For a fair comparison, we set the gradient quantization bit b = 8 for QSVRG.

(iii) The full-precision implementations of AsyLPG and Acc-AsyLPG, denoted as AsyFPG and
Acc-AsyFPG, respectively. In both algorithms, we remove double quantization.

Convergence and time consumption. Figure 3 presents the evaluations on dataset real-sim. The
plot (a) shows that AsyLPG and Acc-AsyLPG have similar convergence rates to their full-precision
counterparts. Our Sparse-AsyLPG also converges fast with a very small accuracy degradation. The
time consumption presented in the plot (b) shows the communication-efficiency of our algorithms.
With similar convergence rates, our low-precision algorithms significantly reduce the communication
overhead when achieving the same training loss. Moreover, the comparison between AsyLPG and
QSVRG validates the redundancy of 32 bits representation of model parameter.

Communication complexity. We experimented logistic regression on dataset rcv1 [7]. The L1 and
L2 regularization are adopted, both with weights 10−4. lr is tuned in the same way as real-sim. In
Figure 3(d), we record the total number of transmitted bits. It shows that AsyLPG, Sparse-AsyLPG,
Acc-AsyLPG can save up to 6.48×, 7.33× and 19.19× bits compared to AsyFPG.

5.2 Evaluations on Neural Network
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Figure 4: Evaluation on dataset
MNIST. Top: the training curve.
Bottom: the test error rate.

We conduct evaluations on dataset MNIST [18] using a 3-layer fully
connected neural network. The 6-server distributed test-bed in Sec-
tion 5.1 is adopted. The hidden layer contains 100 nodes, and uses
ReLU activation function. Softmax loss function and L2 regularizer
with weight 10−4 are adopted. We use 10k training and 2k test samples
which are randomly drawn from the full dataset (60k training / 10k
test). The mini-batch size is 20 and the epoch size m is 500. We set
bx = 8 and b = 4 for low-precision algorithms.

We also compare our algorithms with HALP [9], which is a low-
precision variant of SVRG with quantized model vectors. We im-
plement its distributed version with asynchronous parallelism. For a
fair comparison, we also set bx = 8 for HALP. lr is constant and is
tuned to achieve the best result for each algorithm. Figure 4 presents the convergence of the seven
algorithms. In the left table of Table 1, we record the total number of transmitted bits. We see
that the results are similar as in the logistic regression case, i.e., our new low-precision algorithms
can significantly reduce communication overhead compared to their full-precision counterparts and
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Figure 6: Evaluations on CIFAR10: training loss (1st column), test accuracy (2nd column) and total number of
transmitted bits.
Table 1: Evaluation on dataset MNIST. Left: # of transmitted bits until the training loss is first below 0.05. Right:
The value of bx and # of transmitted bits of AsyLPG under different µ.

Algorithm # bits Ratio

AsyFPG 2.42e9 −
Acc-AsyFPG 6.87e8 3.52×
QSVRG 4.50e8 5.38×
HALP 7.36e8 3.29×
AsyLPG 3.33e8 7.28×
Sparse-AsyLPG 2.73e8 8.87×
Acc-AsyLPG 1.26e8 19.13×

µ bx # bits µ bx # bits

0.005 11 2.42e7 2.0 6 1.24e7
0.01 10 2.33e7 10 5 1.14e7
0.05 9 1.52e7 50 4 1.08e7
0.1 8 1.07e7 150 3 1.44e7
0.5 7 1.12e7 800 2 2.16e8

QSVRG. Moreover, our AsyLPG with double quantization has comparable convergence rate to HALP
while sending much less bits.

Study of µ. The hyperparameter µ is set to control the precision loss incurred by model pa-
rameter quantization. Before, we fix bx to compare our algorithms with other methods. Now
we study the relationship of µ and transmitted bits. Note that when µ is fixed, we choose bx
to satisfy (2). In Figure 5, we set µ = 0.6 and study how the accuracy of model quantizer
improves with iterations when running AsyLPG on MNIST. We see that the quantization error
diminishes. Thus, the number of transmitted bits increases as the number of iteration grows.
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Figure 5: The accuracy of
model quantizer.

Next, in the right table of Table 1, we study the performance of AsyLPG
under different µ. The value bx is also chosen by guaranteeing (2). We
provide the overall numbers of transmitted bits under different bx until
the training loss is first less than 0.5. The results validate that with the
increasing µ, we can choose a smaller bx, to save more communication
cost per iteration. The total number of transmitted bits decreases until
a threshold µ = 0.5, beyond which significant precision loss happens
and we need more training iterations for achieving the same accuracy.

Evaluations on Deep Model. We further set up experiments on PyTorch with ResNet18 [11] on
CIFAR10 dataset [16]. The model size is about 44MB. We use 50k training samples and 10k
evaluation samples. For direct comparison, no data augmentation is used. The batch size is 128. The
learning rate starts from 0.1, and is divided by 10 at 150 and 250 epochs. We set bx = 8, b = 4 for
low-precision algorithms. The sparsity budget ϕt = ||αt||1/||αt||∞. In Figure 6, we plot the training
loss and test accuracy with respect to epochs, and provide the total transmitted bits until the training
loss first gets below 0.17. It shows that our algorithms achieve similar accuracy and effectively reduce
the communication cost compared to benchmarks.

6 Conclusion

We propose three communication-efficient algorithms for distributed training with asynchronous
parallelism. The key idea is quantizing both model parameters and gradients, called double quan-
tization. We analyze the variance of low-precision gradients and show that our algorithms achieve
the same asymptotic convergence rate as the full-precision algorithms, while transmitting much
fewer bits per iteration. We also incorporate gradient sparsification into double quantization, and
setup relation between convergence rate and sparsity budget. We accelerate double quantization by
integrating momentum techniques. The evaluations on logistic regression and neural network based
on real-world datasets validate that our algorithms can significantly reduce communication cost.
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