腾讯 AI Lab 官网

腾讯 AI Lab 官网
GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization
Abstract View the Paper
In this paper, we propose a fast Gauss-Seidel Operator Splitting (GSOS) algorithm for addressing multi-term nonsmooth convex composite optimization, which has wide applications in machine learning, signal processing and statistics. The proposed GSOS algorithm inherits the advantage of the Gauss-Seidel technique to accelerate the optimization procedure, and leverages the operator splitting technique to reduce the computational complexity. In addition, we develop a new technique to establish the global convergence of the GSOS algorithm. To be specific, we first reformulate the iterations of GSOS as a twostep iterations algorithm by employing the tool of operator optimization theory. Subsequently, we establish the convergence of GSOS based on the two-step iterations algorithm reformulation. At last, we apply the proposed GSOS algorithm to solve overlapping group Lasso and graph-guided fused Lasso problems. Numerical experiments show that our proposed GSOS algorithm is superior to the state-of-the-art algorithms in terms of both efficiency and effectiveness.
Venue
2017 ICML
Publication Time
Aug 2017
Authors
Li Shen, Wei Liu, Ganzhao Yuan, Shiqian Ma